
Final Exam Fall 2022

This exam consists of 8 questions. You have 180 minutes – budget your time wisely.
Assume the ArmLab/Linux/gcc217 environment unless otherwise stated in a problem.

Do all of your work on these pages. You may use the provided blank spaces for scratch
space, however this exam is preprocessed by computer, so for your final answers to be
scored you must write them inside the designated spaces and fill in selected circles and
boxes completely (⚫ and⬛, not ✔ or ✘). Please make text answers dark and neat.

Name: NetID:

Precept:

◯ P01 - MW 1:30
Xiaoyan Li

◯ P04 TTh 1:30
Qingchen Dang

◯ P07 TTh 3:30
David Xu

◯ P02 - MW 3:30
Xiaoyan Li

◯ P05 TTh 1:30
Donna Gabai

◯ P08 TTh 3:30
Donna Gabai

◯ P03 - TTh 12:30
Maxine Perroni-Scharf

◯ P06 TTh 2:30
Jihoon Chung

◯ P09 TTh 7:30
William Yang

This is a closed-book, closed-note exam, except you are allowed one two-sided study
sheet. Please place items that you will not need out of view in your bag or under your
working space at this time. Electronic devices such as cell phones, laptops, music
players, etc. may not be used during this exam.

This examination is administered under the Princeton University Honor Code. Students
should sit one seat apart from each other, and refrain from talking to other students
during the exam. All suspected violations of the Honor Code must be reported to
honor@princeton.edu.

In the box below, copy and sign the Honor Code pledge before turning in your exam:
“I pledge my honor that I have not violated the Honor Code during this examination.”

Exam statistics:
Mean: 63.3 / 85 (74.5%)
StdDev: 9.88 / 85
25th %ile: 58 / 85
50th %ile (Median): 65 / 85
75th %ile: 70 / 85
Max: 83 / 85

(The exam questions begin on page 3. This page may be used for scratch work,
however any answers given on this page will not be graded.)

Page 2 of 18

Question 1: Eh‽ Oh! Aw DraT! 9 points

For each statement below, identify whether it typically applies to an abstract object
(AO), abstract data type (ADT), both, or neither. Fill in exactly one circle per line.

AO ADT Both Neither
a. Interface makes representation visible to the client: ◯ ◯ ◯ ⚫

b. Interface defines an opaque pointer type: ◯ ⚫ ◯ ◯

c. Interface methods do not take instance as argument: ⚫ ◯ ◯ ◯

d. Implementation uses file-scope variables: ⚫ ◯ ◯ ◯

e. Client may instantiate multiple instances: ◯ ⚫ ◯ ◯

f. Implemented in A1’s decomment.c: ◯ ◯ ◯ ⚫

g. Defined by A2’s string.h interface: ◯ ◯ ◯ ⚫

h. Implemented in A3’s symtablelist.c: ◯ ⚫ ◯ ◯

i. Provided for you in A4’s Part 2 (DT): ◯ ◯ ⚫ ◯

Question 2: Tally-ho! What fun! 4 points

Consider this function declaration: void *funFun(int *, double*);

We want to pass funFun as a parameter to a higher order function (a function that is
parameterized by another function), hoFun, but hoFun’s parameter is a function pointer
for a function that takes two generic pointers as parameters and returns a C string.

What is the cast required for funFun to be passed as an argument to hoFun?

Page 3 of 18

Question 3: Makefile Go “Brrr!” 13 points

Consider this Makefile, in which the comments (starting with #) at the end of each of
the six commands are line markers to identify the command in this problem.

Assume that the working directory initially contains all the referenced .h and .c files,
the Makefile, and no other files. However, each item continues with the resulting
contents from previous items. (For example, if item m. resulted in the creation of a file
foo.o, then foo.o would still be there during item n.)

Recall these Linux details: touch changes the date/time stamp of the given file(s) to the
current date/time (as if they had just been edited); rm removes a file; t*.o in item h.
means “all .o files starting with t”, and line A in the Makefile is equivalent to:
gcc217 -o prog zero.o one.o two.o three.o four.o

For each item on the next page, select which Makefile rule command(s) – there may
be more than one – make executes when it is invoked in this sequence, or mark the
None box if make does not execute any of commands A through F for that item.

Page 4 of 18

A B C D E F None
a. make two.h ☐ ☐ ☐ ☐ ☐ ☐ ⬛

b. make zero.o ☐ ⬛ ☐ ☐ ☐ ☐ ☐

c. make ⬛ ☐ ⬛ ⬛ ⬛ ⬛ ☐

d. touch zero.c

make ⬛ ⬛ ☐ ☐ ☐ ☐ ☐

e. make ☐ ☐ ☐ ☐ ☐ ☐ ⬛

f. touch two.h

make ⬛ ☐ ☐ ⬛ ☐ ☐ ☐

g. touch four.h

make ⬛ ☐ ☐ ⬛ ⬛ ⬛ ☐

h. touch t*.o

make ⬛ ☐ ☐ ☐ ☐ ☐ ☐

i. rm one.o

make two.o ☐ ☐ ☐ ☐ ☐ ☐ ⬛

j. make one.o ☐ ☐ ⬛ ☐ ☐ ☐ ☐

k. make ⬛ ☐ ☐ ☐ ☐ ☐ ☐

Page 5 of 18

(The exam questions continue on page 7. This page may be used for scratch work for
the next problems, however any answers given on this page will not be graded.)

Page 6 of 18

Question 4: Eek! … or is that “Ek0e!”? 6 points

Consider the following code, which uses %hd as a format specifier for a decimal short:

a. What does this code print on armlab, 769
where a short is 2 bytes and little-endian? (0x0301:512+256+1)

b. What does it print on a big-endian 259
machine where a short is still 2 bytes? (0x0103:256+2+1)

c. What does it print on a little-endian
machine where a short is only 1 byte? 1

Question 5: Encore! 8 points

In Precept 23 and Lecture 24 you saw the machine language representation of the ADR
instruction. It was also given to you in miniassembler.c in Assignment 6. As a
reminder, here are the details of that instruction’s machine language representation:

For an instance of the instruction ADR x1, label2 :
● assume the address of the label label2 is: 0x217217
● assume the address of this ADR instruction is: 0x214127

What is the machine code for this instruction, represented in hexadecimal?

Page 7 of 18

Question 6: ¡Ay Ay Ay! 18 points

Consider these three files which are built together into a single program:

file1.c file2.c

file3.c

a. For each underlined line number, indicate whether that line contains a definition, a
declaration that is not a definition, or does not contain a declaration at all or results
in an error. Fill in exactly one circle per line.

Other Neither
Definition Declaration or Error

i. Line 1 in file1.c ◯ ⚫ ◯

ii. Line 2 in file1.c ⚫ ◯ ◯

iii. Line 3 in file1.c ◯ ◯ ⚫
(This is a function call.)

iv. Line 5 in file2.c ◯ ⚫ ◯

v. Line 7 in file3.c ⚫ ◯ ◯

vi. Line 8 in file3.c ◯ ⚫ ◯

b. What section of memory contains the i BSS
referenced on Line 2 in file1.c? (Uninitialized FS/PD)

Page 8 of 18

c. What section of memory contains the i Data
referenced on Line 5 in file2.c? (The i on file3.c Line 7)

d. What section of memory contains the i Data
referenced on Line 7 in file3.c? (Initialized FS/PD)

e. What integer is printed by Line 4 in file1.c? 0
If the value is uninitialized garbage, write “???”. (BSS starts out at 0)

f. Which i is printed by Line 6 in the printI function body in file2.c?

◯ always the one defined in file1.c

◯ always the one defined in file2.c

⚫ always the one defined in file3.c

◯ it depends: the one defined in the file where the function was called from.

g. For each statement, identify to which stage(s) – there may be more than one – of the
build process (Preprocessor, Compiler, Assembler, Linker) the statement applies.

P C A L
i. Line 1 in file1.c helps this stage do its job ☐ ⬛ ☐ ☐

ii. Defines labels for each i variable ☐ ⬛ ☐ ☐

iii. Defines offsets for each i variable ☐ ☐ ⬛ ☐

iv. Adds more declarations to the code in file2.c ⬛ ☐ ☐ ☐

v. Is the first to fail without Line 5 in file2.c ☐ ⬛ ☐ ☐

vi. May, in general, produce a finalized ☐ ☐ ⬛ ⬛
machine language branch instruction

Page 9 of 18

Question 7: A-“Ha”! Presidents and PMs are Different. 12 points

The function diffFiles is a client of FT from Assignment 4. This function takes two
strings representing file paths in the tree, prints the first difference, if any, in the files’
contents and returns TRUE if the contents match exactly or FALSE if the contents do not
match or if either path is not a file in the tree. The function does not attempt to handle
empty files and assumes files’ contents are always retrievable and match the size
specified when they were inserted. Here is an excerpt of a test client for diffFiles:

Unfortunately the lines from the core of this function's implementation have become
jumbled, though the skeleton remains:

Page 10 of 18

Here are the remaining lines in the function, which have lost their indentation and had
any numbers in variables replaced by ?s (so each ? may represent either a 1 or a 2):

As a reminder, here are abbreviated specifications for the two relevant FT API functions:

There are 16 lines in total that are missing, so some lines appear more than once.

The first four missing lines set up the file contents from pcPath1, if possible. The
second four missing lines set up the file contents from pcPath2, if possible, and thus
will have the exact same set of line markers (letters A-K) from the list in the box above.
In this box, enter the four line markers that represent this (repeated) four-line sequence:

BDGI
(BGID/DBGI also work)

The last eight missing lines use the file contents correctly set up in the first eight lines in
order to implement diffFiles’s specified functionality. Only 1 line from the four lines in the
first box is reused in this portion of the code.
In this box, enter the eight line markers that represent this final eight-line sequence:

A C E J G F H K

Page 11 of 18

Question 8: Oy! (Where’s gdb when you need it?) 15 points

Once you finish this question, you will be done with COS 217 – something that merits a,
to fit the exam’s theme, Huzzah! Soon it could be time to start your LabTA career. Let’s
make sure you are ready for that endeavor.

a. Some students’ task is to write an assembly function that returns for any𝑥 · 2𝑛

long x and non-negative int n. To show you are up to the task of helping
them, write the flattened C code corresponding to a more general version of this
function that also accepts negative values for n, using the standard library
function abs (which takes one int and returns its absolute value as an int):

C Flattened C

long xTime2ToN(long x, int x) {
long result = x;

if(n < 0) goto ElseClause;
result = result << n;
goto AfterElse;

ElseClause:
result = result >> abs(n);

AfterElse:
return result;

}

Page 12 of 18

Now show you are ready to debug the numerous, creative, and diverse ways that
assembly code can be subtly wrong. To help you do this, you can refer to this
abbreviated ARM assembly language reference guide:

Instruction(s) Description

{add,sub,lsl} dst, src1, src2 dst = src1 {+, -, <<} src2

ldr dst, [src] Load 4 or 8 bytes pointed to by src into dst

ldrsw dst, [src]
Load 4 bytes pointed to by src into dst ,
then sign-extend that value to 8 bytes.
Used because we cannot mix w and x registers in lsl

str src, [dst] Store 4 or 8 bytes in src to memory pointed to by dst

mov dst, src Copy src to dst

ret Return to address pointed to by x30

{x0–x7 , x0} Used for {arguments to , return value from} function

The simplified version of the function, called powerShift, has the following C code for
students to translate into ARM assembly language:

On each of the next five pages, you are given an incorrect version of the assembly code
for powerShift and the symptoms of the bug (e.g. returning the wrong answer or
crashing). For each version, use the box below the assembly code to describe that
version’s bug in no more than two sentences.

Page 13 of 18

b. Buggy Assembly 1
(Returns incorrect result.)

Bug Description 1

x0 is not stored into [sp, x] and w1 is not stored into [sp, n],
but the program subsequently loads from those memory locations

Page 14 of 18

c. Buggy Assembly 2
(Returns incorrect result.)

Bug Description 2

w0, rather than x0, is stored into [sp, x]

Page 15 of 18

d. Buggy Assembly 3
(Does not assemble.)

Bug Description 3

mov tries to load from memory by dereferencing [sp, x],
which isn’t a valid version of mov. ldr would have been the
right instruction to load from memory.

Page 16 of 18

e. Buggy Assembly 4
(Crashes with a segfault.)

Bug Description 4

The local variable result is stored at offset 0 from sp, which
Is also where x30 is stored in the prolog. This corrupts the saved
value of the address to which ret will return.

Page 17 of 18

f. Buggy Assembly 5
(Crashes with a segfault.)

Bug Description 5

The epilogue is in the wrong order: tearing down the stackframe
before loading the saved return address and the return value
from the stack. The values loaded into x30 and x0 will be
nonsensical data from a different stackframe!

Page 18 of 18

