
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/22/24 10:44  AM

7. DIGITAL CIRCUITS

‣ boolean algebra

‣ logic gates

‣ adder circuit

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Context

Q. How are computers built?
A. Not nearly as complicated as you might think.
 
This lecture. Introduction to digital circuits.

・Digital = all signals are either 0 or 1.

・Analog = signals vary continuously.

・Advantages of digital: accurate, reliable, fast, cheap, scalable, …
 
 
 
Applications. Laptop, smartphone, gaming console, pacemaker, microprocessor, …

2

7. DIGITAL CIRCUITS

‣ boolean algebra

‣ logic gates

‣ adder circuit

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Boolean algebra

Boolean algebra. Developed by George Boole in 1840s to study logic problems.

・Values of variables are true (1) or false (0).

・Primitive operations are NOT, AND, and OR.

・Widely used in mathematics, logic, computer science, …
 
 
 
 
 
 
 
 
 
 
 
Relevance to circuits. Provides the mathematical foundation.

4

George Boole is Coole

this lecture

operation
logic

notation
Java

notation
circuit

notation precedence

NOT ¬ x !x x ′ highest

AND x ⋀ y x && y x ⋅ y middle

OR x ⋁ y x || y x + y lowest

Copyright 2004, Sidney Harris

http://www.sciencecartoonsplus.com/contact.htm

Truth tables

Boolean function. A function whose arguments and result assume the values 0 and 1.
 
Truth table. A systematic way to define a boolean function.

・One row for each possible assignment of arguments.

・Each row gives the function value for the specified arguments.

・The truth table of a boolean function of n variables has 2n rows.

5

AND

x y x ⋅ y

0 0 0

0 1 0

1 0 0

1 1 1

OR

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

x x ′

0 1

1 0

x y z f (x, y, z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

count in binary from 0 to 2n − 1

Boolean algebra properties

Boolean algebra shares many properties with elementary algebra.

6

property AND OR

commutative x ⋅ y = y ⋅ x x + y = y + x

associative x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z x + (y + z) = (x + y) + z

identity x ⋅ 1 = x x + 0 = x

distributive x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z) x + (y ⋅ z) = (x + y) ⋅ (x + z)

complementary x ⋅ x′ = 0 x + x′ = 1

idempotent x ⋅ x = x x + x = x

De Morgan (x ⋅ y) ′ = x ′ + y ′ (x + y) ′ = x ′ ⋅ y ′

duality in any law, can interchange + and・, along with 0 and 1

⋮ ⋮

same as
elementary algebra

different from
elementary algebra

ax
io

m
s

th
eo

re
m

s

justifies use of ・ and +
for AND and OR

Proving a theorem in Boolean algebra

Q. How to prove a theorem, such as De Morgan’s law?
 
A1. Apply sequence of axioms or known theorems.
 
A2. For each possible assignment of truth values to variables,  
 evaluate the purported theorem; confirm that it is true.  

Ex. De Morgan’s law: (x ⋅ y) ′ = (x ′ + y ′).

7

x y x ⋅ y (x ⋅ y) ′

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

x y x′ y′ x ′ + y ′

0 0 1 1 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

truth table for LHS truth table for RHS

“method of perfect induction”

Boolean functions of two variables

Boolean function. A function whose arguments and result assume the values 0 and 1.

8

x y AND OR NAND NOR XOR

0 0 0 0 1 1 0

0 1 0 1 1 0 1

1 0 0 1 1 0 1

1 1 1 1 0 0 0

commonly used boolean functions of 2 variables

Copyright 2010, Toothpaste for Dinner

https://www.toothpastefordinner.com/index.php?date=071310
https://www.toothpastefordinner.com/index.php?date=071310

Boolean functions of three (and more) variables

Boolean function. A function whose arguments and result assume the values 0 and 1.

9

x y z AND OR MAJ ODD

0 0 0 0 0 0 0

0 0 1 0 1 0 1

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 0 1

1 0 1 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 1 1

function shorthand description

logical AND AND all inputs are 1

logical OR OR any input is 1

majority MAJ more inputs are 1 than 0

odd parity ODD odd number of inputs are 1

these functions all
extends to n variables

some boolean functions of 3 variables

Sum-of-products

Sum-of-products. Every boolean function can be represented as a sum of products.

・Products: form an AND term for each 1 in truth table.

・Sum: combine the terms with the OR function.

10

x y z MAJ x′ ⋅ y ⋅ z x ⋅ y′ ⋅ z x ⋅ y ⋅ z′ x ⋅ y ⋅ z

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 1

1 1 0 1 0 0 1 0 1

1 1 1 1 0 0 0 1 1

Expressing MAJ(x, y, z) as a sum of products

(x′ ⋅ y ⋅ z) + (x ⋅ y′ ⋅ z) + (x ⋅ y ⋅ z′) + (x ⋅ y ⋅ z) = MAJ

also known as
“disjunctive normal form”

Digital circuits: quiz 1

Which of the following does NOT represent majority function?

A. (x ⋅ y) + (y ⋅ z) + (x ⋅ z)

B. z (x ′y + xy ′) + xy

C. (x ⋅ y) + (y ⋅ z)

D.

11

public static boolean majority(boolean x, boolean y, boolean z) {
 int count = 0;
 if (x) count++;
 if (y) count++;
 if (z) count++;
 return count >= 2;
}

false negative when (x, y, z) = (1, 0, 1)

Universality

Def. A set of operations is universal if every boolean function can be expressed  
using just those operations.
 
Proposition. { AND, OR, NOT } is a universal set of operations.
Pf. Sum-of-products construction on previous slide.
 
Proposition. { NAND } is a universal set of operations.
Pf. { AND, OR, NOT } can be constructed from NAND.

12

NAND

x y NAND

0 0 1

0 1 1

1 0 1

1 1 0

7. DIGITAL CIRCUITS

‣ boolean algebra

‣ logic gates

‣ adder circuit

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

A basis for digital devices

Claude Shannon. Identified the deep connection between Boolean algebra and circuits.

・Demonstrated how circuits could be analyzed using Boolean algebra.

・Designed circuits to perform mathematical operations on binary numbers.
 
 
 
 
 
 
 
 
 
 
 
Impact. Every electronic device we use today is based upon Shannon’s foundational work.

14

add, subtract, multiply, factor, …

SYMBOLIC ALYSIS

OF

LAY AND SVITCHING CI CUITS

by

Claude Elwood Shannon

B.S., University of Michigan

1936

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

from the

Massachusetts Institute of Technology

1940

Signature of uthor Signature redacted
Department of Electrical Engineering, August 10, 1937

S~gnature of Professor Signature redacted in Charge of Research _ ---------------
Signa~ure of Cne.irman of Department Signature redacted

Committee on Graduate Students 1 _ ---------------

Claude Shannon’s master’s thesis at MIT (1937)

The Bit Player

15

available on COS 126 Canvas
(movie features Dean Andrea Goldsmith)

Primitive logic gates: AND, OR, and NOT

Logic gate. Physical device that implement a boolean function with one output.

gate truth table notation symbol

NOT
(inverter)

AND

OR

16

x NOT
0 1
1 0

x y AND
0 0 0
0 1 0
1 0 0
1 1 1

x ⋅ y

x y OR
0 0 0
0 1 1
1 0 1
1 1 1

x + y

x ′ x ′x

x ⋅ y
x
y

x + y
x
y

Digital circuits

Digital circuit. A network of logic gates connected by wires.

・Every wire is either on (1) or off (0).

・Can connect output of one gate to input of another gate.

・Any wire connected to a wire that is on is also on (and same for off).

17

x y

 f(x, y)

crossing
wires

connected
wires

output of AND gate
is input of OR gate

x y XOR
0 0 0
0 1 1
1 0 1
1 1 0

circuit inputs

circuit output

Digital circuits

Digital circuit. A network of logic gates connected by wires.

・Every wire is either on (1) or off (0).

・Can connect output of one gate to input of another gate.

・Any wire connected to a wire that is on is also on (and same for off).

18

x y

x y XOR
0 0 0
0 1 1
1 0 1
1 1 0

0 1

0

1 0

0 1

1
1

0

1

 f(x, y)

Digital circuits: quiz 2

For which values of x and y does the following circuit output 1 ?

A. x = 0, y = 0

B. x = 0, y = 1

C. x = 1, y = 0

D. x = 1, y = 1

E. None of the above.

19

x y

 f(x, y)

Multiway AND gates

Multiway AND gate.

・1 if all inputs are 1.

・0 if any input is 0.

20

x0
x1
x2
x3

AND
(4-way) x0 ⋅ x1 ⋅ x2 ⋅ x3

4-way AND gate symbol

x4

x5
AND

x6

x7
AND

AND

x0

x1
AND

x2

x3
AND

x0 ⋅ x1 ⋅ x2 ⋅ x3 ⋅ x4 ⋅ x5 ⋅ x6 ⋅ x7

8-way AND gate implementation
(tree of 2-way AND gates)

Multiway OR gates

Multiway OR gate.

・1 if any input is 1.

・0 if all inputs are 0.

21

x0
x1
x2
x3

AND
(4-way) x0 + x1 + x2 + x3

4-way OR gate symbol

x4

x5
AND

x6

x7
AND

AND

x0

x1
AND

x2

x3
AND

AND

AND x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7

8-way OR gate implementation
(tree of 2-way OR gates)

Generalized AND gates

Generalized AND gate.

・1 for exactly one set of input values.

・0 for all other sets of input values.

22

w
x
y
z

G-AND
(4-way) w ′ ⋅ x ⋅ y ′ ⋅ z

each “inversion bubble”
denotes a NOT gate

4-way generalized
AND gate symbol

y
z

w
x

w ′ ⋅ x ⋅ y ′ ⋅ z

4-way generalized AND gate implementation
(tree of 2-way AND gates, plus NOT gates)

Majority function

Sum-of-products construction.

・Identify rows of truth table where the function is 1.

・Use a generalized AND gate for each term.

・Combine the terms using an OR gate.
 
Ex 1. Majority function.

23

x y z MAJ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

MAJ(x, y, z) = x ′yz + xy ′z + xyz ′ + xyz

x ′yz

xy ′z

xyz ′

xyz

MAJ

3-way
majority circuit

x y z

MAJ(x, y, z)

x ′yz

xy ′z

xyz ′

xyz

Odd-parity function

Sum-of-products construction.

・Identify rows of truth table where the function is 1.

・Use a generalized AND gate for each term.

・Combine the terms using an OR gate.
 
Ex 2. Odd-parity function.

24

x y z ODD

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

ODD(x, y, z) = x ′y ′z + x ′yz ′ + xy ′z ′ + xyz

x ′y ′z

x ′yz ′

xy ′z ′

xyz

ODD

3-way odd
parity circuit

x y z

ODD(x, y, z)

x ′y ′z

x ′yz ′

xy ′z ′

xyz

Sum-of-products construction (summary)

Goal. Design a digital circuit that computes a given boolean function.
 
Recipe.

・Step 1: Represent input and output with boolean variables.

・Step 2: Construct truth table to define the function.

・Step 3: Identify rows where the function is 1.

・Step 4: Use a generalized AND gate for each row, and OR the results.
 
 
 
Profound consequence. Can design a digital circuit for ANY boolean function.

25

sum-of-products construction

Optimized digital circuits

Caveat. Sum-of-products construction is not optimal in terms of:

・Space = number of gates.

・Time = depth of circuit.
 
Ex. Majority function.

26

x y z

x y z

xy + yz + xz

3-way majority circuit (optimized)3-way majority circuit (sum-of-products)

this course: we’ll ignore such low-level optimization

Digital circuits: quiz 3

How many 3-way generalized AND gates are needed to build the sum-of-products circuit
for the following truth table?

A. 1

B. 2

C. 3

D. 4

27

x y z

3-way equality circuit
(sum-of-products)

x y z EQ

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

7. DIGITAL CIRCUITS

‣ boolean algebra

‣ logic gates

‣ adder circuit

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Let's make an adder circuit!

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
First step. Represent inputs and outputs in binary.

29

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

y0x0

z3 z2 z1 z0 4 output bits

8 input bits

ADDER

y1x1y2x2y3x3

ignore integer overflow

Let's make an adder circuit!

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
First step. Represent inputs and outputs in binary.

30

ADDER

1 0 1 1

01101100

0 1 0 1
+ 0 1 1 0
 1 0 1 1

ignore integer overflow

Digital circuits: quiz 4

What is the binary sum 1011 + 0110?

A. 0001

B. 1001

C. 1101

D. 1121

E. 10001

31

1 1 1
1 0 1 1

+ 0 1 1 0
 0 0 0 1

ignore
overflow

Let's make an adder circuit!

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
Straw-person solution. Build a truth table for each output bit.
Approach is not scalable! Truth table for 128-bit adder would have 2256 rows.

32

truth table for 4-bit adder

x3 x2 x1 x0 y3 y2 y1 y0 z3 z2 z1 z0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 1 0 0 1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 0

28 = 512 rows

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

exceeds number of
electrons in universe (!)

Let's make an adder circuit!

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
 
 
 
 
 
 
Efficient solution. Do one bit at a time.

・Build truth table for each carry bit.

・Build truth table for each sum bit.

33

xi yi ci ci+1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

truth table for carry bit

MAJ

0

0

0

1

0

1

1

1

majority function (!)

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0 = 0

ci+1 = MAJ(xi, yi, ci)

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
 
 
 
 
 
 
Efficient solution. Do one bit at a time.

・Build truth table for each carry bit

・Build truth table for each sum bit.
majority function (!)

Let's make an adder circuit!

34

odd-parity function (!)

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0 = 0

xi yi ci zi

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

truth table for sum bit

ODD

0

1

1

0

1

0

0

1

zi = ODD(xi, yi, ci)

Let's make an adder circuit!

Adder circuit. Compute z = x + y for 4-bit binary integers.
 
 
 
 
 
 
 
Efficient solution. Do one bit at a time.

・Carry bit is MAJ.

・Sum bit is ODD.

・Chain 1-bit adders to “ripple” carries.
 
Size of circuit. Θ(n) gates for n-bit adder.

35

c3 c2 c1 c0

x3 x2 x1 x0

+ y3 y2 y1 y0

 z3 z2 z1 z0

c0 = 0

MAJ

ODD

0

x0

z0

y0

MAJ MAJ

ODD ODD

0

x1 y1 x0

z1 z0

y0

MAJ MAJ MAJ

ODD ODD ODD

0

x2 y2 x1 y1 x0

z2 z1 z0

y0

MAJ MAJ MAJ MAJ

ODD ODD ODD ODD

0

x3 y3 x2 y2 x1 y1 x0

z3 z2 z1 z0

y0

Adder circuit trace

Circuit trace. Trace the execution of the adder circuit on a given input.

36

MAJ MAJ MAJ MAJ

ODD ODD ODD ODD

0

x3 y3 x2 y2 x1 y1 x0

z3 z2 z1 z0

y0

1 1 1
1 0 1 1

+ 0 1 1 0
 0 0 0 1

1 0 0 1 1 1 1 0

1

0

0

1

0

1

0

1

Encapsulation

Encapsulation in circuit design mirrors familiar software design principle.

・API describes behavior (input and outputs) of circuit.

・Implementation gives details of how to build it from wires and gates.

・Client uses circuit as a black box.
 
 
 
 
 
 
 
 
 
 
 
Bottom line. We manage complexity by encapsulating circuits.

37

MAJ ODD ADDER

Layers of abstraction

Layers of abstraction apply with a vengeance.

・On/off.

・Switch.

・Primitive gates (AND, OR, NOT).

・Composite gates (multiway AND/OR, MAJ, ODD).

・Adder circuit.

・Memory.

・Arithmetic logic unit (ALU).

・Central processing unit (CPU).

・Input and output.

・Your computer.
 
Want to learn more? See ECE 206 and ECE 365.

38

switch (transistor)

AND OR NOT

MAJ

decoder flip–flop

memory ALU control

clock

central processing unit (CPU)

electrons silicon

ODDNAND …

…adder

register

input output

Credits

Co-instructors
 
 
 
 
 
 
Undergrad graders and lab TAs. Apply to be one next semester!

39

Alan Kaplan Kobi KaplanSebastian Caldas

 , course admin, and graduate student preceptors. , course admin,

ChatGPT:> please compose a COS 126 poem

40

In Princeton’s halls, where minds align,

COS 126 and Java intertwine.

Computability’s essence, programming’s sphere,

In this synthesis, brilliance appears.

In the realm of TOY’s simplified grace,

Circuits hum with intricate embrace.

Machine learning’s promise, a horizon to chase,

In this trio’s dance, innovation finds its place.

A final thought

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Retro Telephone and Smartphone Adobe Stock education license

Macbook Pro Apple

Samsung Galaxy S23 Samsung

Xbox One Microsoft

Cardiac Pacemaker Adobe Stock education license

Apple A16 Bionic Chip Apple

Boole is Coole IrishPhilosophy CC BY-NC-SA 2.0

Boole Orders Lunch Sidney Harris

From NAND to Tetris nand2tetris.org

https://stock.adobe.com/images/retro-telephone-in-analog-age-and-smartphone-in-digital-age/393485332
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://applestyle.hu/wp-content/uploads/2018/05/macbook-tok-clear.jpg.webp
https://www.samsung.com/levant/smartphones/galaxy-s23-ultra/buy/
https://www.gamestop.com/consoles-hardware/xbox-one/consoles/products/microsoft-xbox-one-console-1tb---black/113691.html
https://stock.adobe.com/images/artificial-cardiac-pacemaker-3d-rendering/142019028
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.quora.com/Why-does-Apple-use-Intel-processors-in-their-phones-instead-of-Snapdragon-processors
https://www.irishphilosophy.com/2014/12/08/ones-and-zeros/
https://creativecommons.org/licenses/by-nc-sa/2.0/
http://www.sciencecartoonsplus.com/gallery/computers/
https://www.nand2tetris.org/

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Claude Shannon Lucent Technologies

Bit Player Theatrical Poster thebitplayer.com

John Hutton as Claude Shannon thebitplayer.com

Logic Gate Symbols Adobe Stock education license

Apple MacBook Pro Adobe Stock education license

https://s3.amazonaws.com/bell-labs-microsite-news/news/2001/february/26/1.html
https://thebitplayer.com/storage/app/bit-player-one-sheet-full.jpg
https://thebitplayer.com/storage/app/john-hutton.jpg?1688240484
https://stock.adobe.com/images/vector-set-of-logic-gate-symbols-symbols-for-logic-gates-and-not-buffer-nand-or-nor-xor-xnor-line-or-outline-blue-icons-isolated-on-a-white-background-digital-logic-gates/502635240
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/apple-macbook-pro-13-with-m2-chip-in-silver-color-realistic-vector-illustration-the-macbook-pro-is-a-line-of-mac-laptops-made-by-apple-inc/601142328
https://stock.adobe.com/enterprise-conditions#educationLicenses

