
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/10/24 10:35  AM

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Objects

Data type. A set of values and a set of operations on those values.
Java class. Java’s mechanism for defining a new data type.
 
Object. An instance of a data type that has

・State: value from its data type.

・Behavior: actions defined by the data type’s operations.

・Identity: unique identifier (e.g. memory address).

2

data type set of values example values operations

String sequences of characters
"Hello, World"

"I ❤ COS 126"
length, concatenate, compare,

ith character, substring,…

Point location in the plane
 (3, 5)
(−5, 4)

Euclidean distance, …

Object-oriented programming (OOP)

Decomposition. Break up a complex programming problem into smaller functional parts.
 
 
 
 
 
 
 
Procedural programming. Implement as a collection of functions.
Object-oriented programming. Implement as a system of interacting objects.  

Benefits. Supports the 3 Rs:

・Readability: understand and reason about code.

・Reliability: test, debug, and maintain code.

・Reusability: reuse and share code.

3

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Application programming interface (API). Specifies the set of operations for a data type.
Implementation. Program that implements a data type’s operations.
Client. Program that uses a data type through its API.

Review: API, client, and implementation

5

client API

contract between
client and implementation

 Point p = new Point(x0, y0);

 ...

 double dist = p.distanceTo(q);

public class Point

 Point(double x, double y)

double distanceTo(Point other)

String toString()

 ⋮

implementation

public class Point {
 private final double x0;
 private final double y0;

 public Point(double x, double y) {
 x = x0;
 y = y0;
 }

 ...
}

Encapsulation

Encapsulation. Separating clients from implementation details by hiding information.

・Functions encapsulate code.

・Objects encapsulate data and code.
 
Abstract data type. A data type whose internal representation is hidden from clients.
 
Principle. A client does not need to know how a data type is implemented in order to use it.
 
 
Benefits.

・Can develop client code and implementation code independently.

・Can change implementation details without breaking clients.

6

Java 11 changed internal String representation
(to improve performance)

Private access modifier.

・Cannot directly access a private instance variable (or method) from another file.

・Compile-time error to attempt to do so.
 
 
 
 
 
 
 
 
 
 
 
Main benefit. Helps enforce encapsulation.
Best practice. Declare all instances variables as private.

The private access modifier

7

requirement in this course

public class Counter {
 private int count;

 public Counter() {
 count = 0;
 }

 public void hit() {
 count++;
 }

}

implementation

public class RogueClient {
 public static void main(String[] args) {
 Counter counter = new Counter();
 counter.hit();
 ...
 counter.count = -16022;

 }
}

rogue client

~/cos126/oop3> javac-introcs RogueClient.java
RogueClient.java:5: error: count has
private access in Counter
 counter.count = -16022;
 ^
1 error

compile-time error

Al Gore received −16,022 votes
in Volusia County, Florida

in 2000 presidential election

so that programmers (including you!) won’t misuse the data type

Encapsulation fail

Famous encapsulation failures.

・Y2K bug.

・ZIP code vs. ZIP+4 code.

・IPv4 vs. IPv6.

8

Which of the following instance variables should be declared as private ?

A. The instance variables x and y in Point.

B. The instance variables center and radius in Circle.

C. The instance variables hours and minutes in Clock.

D. The instance variables re and im in Complex.

E. All of the above.

Designing data types: quiz 1

9

best practice: declare all
instance variables as private

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Immutability. A data type is immutable if you can’t change a data-type value once created.

Immutability

11

immutable mutable

String Clock

Color Picture

Point Counter

Circle int[]

⋮ ⋮

Immutability. A data type is immutable if you can’t change a data-type value once created.
 
Advantages of immutability.

・Easier to trace, debug, and reason about code.

・Prevents aliasing bugs.

・Simplifies multi-threaded programs.
 
Main disadvantage. Overhead of creating (and disposing of) extra objects.
 
Best practices.

Immutability

12

“ Classes should be immutable unless there’s a very good reason

 to make them mutable… . If a class cannot be made immutable,

 you should still limit its mutability as much as possible. ”

 — Joshua Bloch (Java architect)

The access modifier final prevents changes to a variable (after initialization).
 
Ex. Once a point (x, y) is created, cannot change x or y.

The final access modifier

13

public class Point {
 private final double x; // x-coordinate
 private final double y; // y-coordinate

 public Point(double x0, double y0) {
 x = x0;
 y = y0;
 }

 public void scaleX(double alpha) {
 x = alpha * x;
 }

 ...
}

compile-time error
(since x is final)

~/cos126/oop3> javac-introcs Point.java
Point.java:11: error: cannot assign
a value to final variable x
 x = alpha * x;
 ^
1 error

The access modifier final prevents changes to a variable (after initialization).
 
Advantages.

・Helps enforce immutability.

・Documents that the value will not change.
 
 
 
Best practice. Declare instance variables as final (unless compelling reason not to).

The final access modifier

14

Which of the following instance variables should not be declared as final ?

A. The instance variables x and y in Point.

B. The instance variables center and radius in Circle.

C. The instance variables re and im in Complex.

D. The instance variables hours and minutes in Clock.

Designing data types: quiz 2

15

the tic() method needs to
change hours and minutes

once you construct a Point, Circle, or Complex object,
the data-type value never changes

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Static vs. instance variables

Instance variable. One variable per object.
 
Static variable. One variable per class.  
Common use case. A global constant.
 
 
 
 
 
 
 
 
 
 
 
Java convention. Define static variables before instance variables.

17

public class Clock {

 private int hours; // hours (0 to 23)
 private int minutes; // minutes (0 to 59)

 ...

}

one variable
per object

one variable
per class

private static final int MINUTES_PER_HOUR = 60;
private static final int HOURS_PER_DAY = 24;

Static vs. instance methods

Instance method. Can refer to instance variables / call other instance methods.
Static method. Cannot refer to instance variables / call instance methods.

18

public class Counter {
 private int count;

 public Counter() {
 count = 0;
 }

 public void hit() {
 count++;
 }

 public static void main(String[] args) {
 hit();
 count++;
 }

}

static method
(associated with the class,

not a specific object)

~/cos126/oop3> javac-introcs Counter.java
Counter.java:13: error: non-static method hit()
cannot be referenced from a static context
 hit();
 ^
Counter.java:14: error: non-static variable count
cannot be referenced from a static context
 count++;
 ^
2 errorsinstance method

(associated with an object)

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Exception. A disruptive event that occurs while a program is running, typically to signal an error.

Exceptions

20

exception description example

ArithmeticException performs invalid arithmetic operation 1 / 0

IllegalArgumentException calls constructor/method with invalid argument StdAudio.play("readme.txt")

NumberFormatException converts string to numeric type Integer.parseInt("12X")

ArrayIndexOutOfBoundsException accesses array with invalid index a[-4]

StringIndexOutOfBoundsException accesses string with invalid index s.charAt(s.length())

NullPointerException uses null when an object is required null.toString()

⋮ ⋮

Best practice. If any constructor/method argument is invalid; throw an exception.

Validating arguments

21

public Clock(int h, int m) {

 if (h < 0 || h >= HOURS_PER_DAY) {
 throw new IllegalArgumentException("invalid hours");
 }
 if (m < 0 || m >= MINUTES_PER_HOUR) {
 throw new IllegalArgumentException("invalid minutes");
 }

 hours = h;
 minutes = m;
}

throw an exception
if invalid argument

~/cos126/oop3> java-introcs BadCallToClock
Exception in thread "main" java.lang.IllegalArgumentException:
invalid minutes
 at Clock.<init>(Clock.java:6)
 at BadCallToClock.main(BadCallToClock.java:4)

Clock clock = new Clock(12, -1);

invalid constructor call

Fail-fast principle. Better to abort immediately and noisily (than eventually and silently).
 
Ex 1. Prefer compile-time error to run-time exception.
Ex 2. Prefer run-time exception to wrong answer.
 
Cost to fix a bug. Rises steeply over software development cycle.  
 
 

 
Silicon Valley meme. “Fail fast, fail often.”

・Experiment freely and learn while trying to achieve objective.

・By quickly finding the failures, you can accelerate learning.

Fail-fast principle

22

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Null reference. A value that indicates a reference does not refer to any valid object.

・The keyword null is a Java literal for the null reference.

・Can assign the value null to any variable of a reference type.
 
 
 
 
 
 
 
Q. What happens if I attempt to manipulate a null reference?
A. Triggers a NullPointerException.
 
 
Warning. Null references typically arise in practice because instance variables and array elements  
(of reference types) are auto-initialed to null.

The null reference

24

String s = null;
int len = s.length();

invoke a method or
access an instance variable

Which of the following produce a NullPointerException ?

A.  

 

B.  

C. Both A and B.  

D. Neither A nor B.

Designing data types: quiz 3

25

public class Mystery {
 private Point point;
 private String name;

 private Mystery(String s) {
 String name = s;
 }

 public int length() {
 return name.length();
 }

 public double distanceToOrigin() {
 Point origin = new Point(0.0, 0.0);
 return origin.distanceTo(point);
 }
}

Mystery x = new Mystery("Hello");
StdOut.println(x.length());

Mystery x = new Mystery("Hello");
StdOut.println(x.distanceToOrigin());

initialized
to null

shadows
instance variable

point is null

name is null

Tony Hoare quotes

On null references:  
 
 
 
 
 
 

On software design:

“ There are two ways of constructing a software design: One way is
 to make it so simple that there are obviously no deficiencies, and
 the other way is to make it so complicated that there are no obvious
 deficiencies. The first method is far more difficult. ”

26

“ I call it my billion-dollar mistake. It was the invention of the null
 reference in 1965… This has led to innumerable errors,
 vulnerabilities, and system crashes, which have probably caused
 a billion dollars of pain and damage in the last forty years. ”

Tony Hoare

The keyword this is a reference to the object whose instance method or constructor is being called.
 
 
 
 
 
 
 
 
 
 
 
 
 
Common use case. Use same names for constructor arguments and instance variables.
Best practice. Programmers debate whether to always (or rarely) use this.

The this reference

27

public class Point {
 private final double x; // x-coordinate
 private final double y; // y-coordinate

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double distanceTo(Point that) {
 double dx = that.x - this.x;
 double dy = that.y - this.y;
 return Math.sqrt(dx*dx + dy*dy);
 }

}

instance variables of
object being constructed

instance variables of
object used to invoke method

“variable shadowing”

3.3 DESIGNING DATA TYPES

‣ encapsulation

‣ immutability

‣ static variables and methods

‣ exceptions

‣ special references

‣ spatial vectors

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Crash course on spatial vectors

A spatial vector is an entity that has magnitude and a direction.

・Quintessential mathematical abstraction.

・Many applications in STEM: force, velocity, momentum, …
 
 
 

Operations on spatial vectors.

・Addition:

・Scaling:

・Dot product:

・Magnitude:

x + y = (x0 + y0, x1 + y1, …, xn−1 + yn−1)

α x = (αx0, αx1, …, αxn−1)

x ∙ y = (x0 ⋅ y0 + x1 ⋅ y1 + … + xn−1 ⋅ yn−1)

∥x∥ = x ∙ x

29

operation result

(1, 2, 3) + (4, 5, 6) (5, 7, 9)

2 (1, 2, 3) (2, 4, 6)

(1, 2, 3) ● (4, 5, 6) 32

∥ (1, 2, 3) ∥ 14

Vector API

A spatial vector is an entity that has magnitude and a direction.

30

public class Vector description

Vector(double[] coords) create a new spatial vector

Vector plus(Vector that) sum of this vector and that

Vector scale(double alpha) scalar product of this vector and alpha

double dot(Vector that) dot product of this vector and that

double magnitude() magnitude of this vector

String toString() string representation

 ⋮ ⋮

API

vector

(1, 2, 3)

(0, −1, 0.5, 0, 0.25)

values

Vector implementation: test client

Best practice. Begin by implementing a simple test client that tests all methods.

31

public static void main(String[] args) {
 double[] x = { 3.0, 4.0 };
 double[] y = { -2.0, 3.0 };
 Vector a = new Vector(x);
 Vector b = new Vector(y);
 StdOut.println("a = " + a);
 StdOut.println("b = " + b);
 StdOut.println("a + b = " + a.plus(b));
 StdOut.println("2a = " + a.scale(2.0));
 StdOut.println("a • b = " + a.dot(b));
 StdOut.println("|a| = " + a.magnitude());
}

instance variables

constructors

instance methods

test client

~/cos126/oop3> java-introcs Vector

a = (3.0, 4.0)
b = (-2.0, 3.0)
a + b = (1.0, 7.0)
2a = (6.0, 8.0)
a • b = 6.0
|a| = 5.0

what we expect, once the
the implementation is done

Vector implementation: instance variables and constructor

Instance variables. Define data-type values.
Internal representation. Sequence of real numbers.

32

public class Vector {

 private final int n;
 private final double[] coords;

 ...

each vector corresponds to its
own sequence of real numbers

(needs its own array instance variable)

instance variables

constructors

instance methods

test client

convenient instance variable
(optional)

How to implement Vector constructor?

A.  

 

B.  

 

C.  

 

D. None of the above.

Designing data types: quiz 4

33

public Vector(double[] a) {
 n = a.length;
 coords = a;
}

public Vector(double[] a) {
 n = a.length;
 for (int i = 0; i < a.length; i++)
 coords[i] = a[i];
}

public Vector(double[] a) {
 n = a.length;
 double[] coords = a;
}

shadows coords[] instance variable

neither encapsulated nor immutable
(see trace on next slide)

array coords[] not initialized

Without a defensive copy

34

0 3 4

vector.coords[] x[]

12

public class Vector {

 private final int n;

 private final double[] coords;

 public Vector(double[] a) {

 n = a.length;

 coords = a;

 }

double[] x = { 0.0, 3.0, 4.0 };

Vector vector = new Vector(x);

x[0] = -12.0;

StdOut.println(vector.magnitude());

vector.n

122 + 32 + 42 = 13

a[]

3

x[]

With a defensive copy

35

0 0 0

vector.coords[]

double[] x = { 0.0, 3.0, 4.0 };

Vector vector = new Vector(x);

x[0] = -12.0;

StdOut.println(vector.magnitude());

public class Vector {

 private final int n;

 private final double[] coords;

 public Vector(double[] a) {

 n = a.length;

 coords = new double[a.length];

 for (int i = 0; i < a.length; i++)

 coords[i] = a[i];

 }

0 3 412

02 + 32 + 42 = 5

0 3 4

vector.n

3

a[]

Vector implementation: constructor

Constructors. Create and initialize new objects.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Best practice. Defensively copy mutable objects.

36

public class Vector {
 private final double[] coords;
 private final int n;

 public Vector(double[] a) {
 n = a.length;
 coords = new double[n];
 for (int i = 0; i < n; i++) {
 coords[i] = a[i];
 }
 }

 ...

“defensive copy”

instance variables

constructors

instance methods

test client

Vector implementation: instance methods

Instance methods. Define data-type operations.

37

public class Vector {
 ...

 public Vector plus(Vector that) {
 checkCompatible(this.n, that.n);
 Vector result = new Vector(n);
 for (int i = 0; i < n; i++) {
 result.coords[i] = this.coords[i] + that.coords[i];
 }
 return result;
 }

 private static void checkCompatible(int n1, int n2) {
 if (n1 != n2) {
 throw new IllegalArgumentException("...");
 }
 }

 ...
}

instance variables

constructors

instance methods

test client

a reusable helper method
(can be static)

Vector implementation: instance methods

Instance methods. Define data-type operations.

38

public class Vector {
 ...

 public double dot(Vector that) {
 checkCompatible(this.n, that.n);
 double sum = 0.0;
 for (int i = 0; i < n; i++) {
 sum += this.coords[i] * that.coords[i];
 }
 return sum;
 }

 public double magnitude() {
 return Math.sqrt(this.dot(this));
 }

 ...
}

a rare time where the
this keyword is indispensable

instance variables

constructors

instance methods

test client

public class Vector {

 private final int n;
 private final double[] coords;

 public Vector(double[] a) {
 n = a.length;
 coords = new double[n];
 for (int i = 0; i < n; i++) {
 coords[i] = a[i];
 }
 }

 public double dot(Vector that) {
 double sum = 0.0;
 for (int i = 0; i < n; i++) {
 sum += this.coords[i] * that.coords[i];
 }
 return sum;
 }

 public double magnitude() {
 return Math.sqrt(this.dot(this));
 }

Vector implementation

39

instance
variables

constructor

instance
methods

 public Vector plus(Vector that) {
 Vector result = new Vector(n);
 for (int i = 0; i < n; i++) {
 result.coords[i] = this.coords[i] + that.coords[i];
 }
 return result;
 }

 public Vector scale(double alpha) {
 Vector result = new Vector(n);
 for (int i = 0; i < n; i++) {
 result.coords[i] = alpha * this.coords[i];
 }
 return c;
 }

 public static void main(String[] args) {
 double[] x = { 3.0, 4.0 };
 double[] y = { -2.0, 3.0 };
 ...
 }

} test client

Summary

40

Data type. A set of values and a set of operations on those values.
Java class. Java’s mechanism for defining a new data type.
 
Object. An instance of a data type that has

・State: value from its data type.

・Behavior: actions defined by the data type’s operations.

・Identity: unique identifier (e.g. memory address).
 
 
API, client, implementation. Separate implementation from client via API.
Encapsulation. Hide internal representation of implementation from clients.
Immutability. Data-type values cannot change.
Fail-fast principle. Find errors early in development.

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

OOP Adobe Stock education license

Modular Design Modular Management

Client Avatars Adobe Stock education license

Contract Icon Adobe Stock education license

Implementation Icon Adobe Stock education license

Y2K Bug Weekly World News

ZIP+4 Code firstlogic.com

IP4 vs. IP6 Adobe Stock education license

Pharmacy Pill Adobe Stock education license

Private Sign on a Door Adobe Stock education license

Fail Fast Adobe Stock education license

https://stock.adobe.com/images/oop-object-oriented-programming-acronym-business-concept-background-vector-illustration-concept-with-keywords-and-icons-lettering-illustration-with-icons-for-web-banner-flyer-landing/451520975
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization
https://stock.adobe.com/images/speech-bubble-concept-feedback-female-avatar-collection-customer-feedback-on-info-graphic-app-and-website-creative-testimonial-template-with-different-shapes-vector-illustration/407464386
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-contract-icon-agreement-and-signature-pact-accord-convention-symbol-flat/89219791
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/implementation-icon-vector-trendy-flat-implementation-icon-from-general-collection-isolated-on-white-background-vector-illustration-can-be-used-for-web-and-mobile-graphic-design-logo-eps10/304217781
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://pastdaily.com/2019/12/30/december-30-1999-looking-for-a-terrorist-looking-for-a-shooter-looking-for-the-y2k-bug/
https://firstlogic.com/insights/zip-4-code
https://stock.adobe.com/images/ipv4-vs-ipv6-3d/45766850
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/pharmacy-pills-capsule-medicine-healthcare-3d-illustration/276035828
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/private-sign-on-a-door/119685570
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/fail-fast-symbol-turned-a-wooden-cube-with-concept-words-fail-fast-on-beautiful-orange-table-orange-background-copy-space-business-and-fail-fast-concept/491799986
https://stock.adobe.com/enterprise-conditions#educationLicenses

