
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/10/24 10:35  AM

3.2 CREATING DATA TYPES

‣ point data type

‣ circle data type

‣ clock data type

‣ complex number data type

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

objects

Basic building blocks for programming

2

any program you might want to write

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops

functions libraries

bring life to your own abstractions

Object-oriented programming (OOP)

A data type is a set of values and a set of operations on those values.
 
We want to write programs that process other types of data.

・Strings, colors, pictures, …

・Points, circles, complex numbers, vectors, matrices, …

・GUIs, database connections, neural networks, plots, …

Last lecture. Use pre-existing data types.
This lecture. Create your own data types.

3

data type set of values example values operations

String sequences of characters
"Hello, World"

“COS 126 is fun" concatenate, length, substring, …

Complex complex numbers
 3 + 5i
−5 + 4i

add, multiply, magnitude, …

Implementing a data type

A data type is a set of values and a set of operations on those values.
 
Implementing a data type. Provide code that:

・Defines the set of values (instance variables).

・Implements operations on those values (instance methods).

・Creates and initialize new objects (constructors).
 
In Java, you implement a data type in a class.

4

instance variables

constructors

instance methods

test client

Java class

3.2 CREATING DATA TYPES

‣ point data type

‣ circle data type

‣ clock data type

‣ complex number data type
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

x

y

A data type for points

A 2d point is a location in the plane.
 
The Point data type allows us to write programs that manipulate points.

public class Point description

 Point(double x0, double y0) create point (x0, y0)

 double distanceTo(Point other) Euclidean distance between two points

 String toString() string representation of this point

API

values

point location (x, y)

p (4, 4)

q (8, 1)

q = (8, 1)

p = (4, 4)

6

Point implementation: test client

Best practice. Begin by implementing a simple test client.

7

instance variables

constructors

instance methods

test client

~/cos126/oop1> javac-introcs Point.java
~/cos126/oop1> java-introcs Point

p = (4.0, 4.0)
q = (8.0, 1.0)
dist(p, q) = 5.0

desired output

r = (x2 − x1)2 + (y2 − y1)2

= (4)2 + (−3)2

= 5

x

y

q = (8, 1)

p = (4, 4)

public static void main(String[] args) {
 Point p = new Point(4.0, 4.0);
 Point q = new Point(8.0, 1.0);
 StdOut.println("p = " + p);
 StdOut.println("q = " + q);
 StdOut.println("dist(p, q) = " + p.distanceTo(q));
}

automatically calls p.toString()
when concatenating a string with an object

Point implementation: instance variables

Instance variables. Define data type values.
Internal representation. Two real numbers (position).
 
 
 
 
 
 
 
 
 
 
 
 
Private access modifier.	 Helps enforce encapsulation.
Final access modifier.	 Helps enforce immutability.

8

each point has it own position
(so needs its own variables)

instance variables

constructors

instance methods

test client
public class Point {
 private final double x; // x-coordinate
 private final double y; // y-coordinate
 ...
}

class name matches
name of file (Point.java)

declared inside the class
(but outside any method)

stay tuned
(next lecture)

Point implementation: constructor

Constructor. Create and initialize new objects.

・Name is same as class.

・Similar to void method (arguments and body).

・But can refer to instance variables (and no static or void keywords).

・Typical purpose: initialize the instance variables.

9

instance variables

constructors

instance methods

test client

public class Point {
 private final double x; // x-coordinate
 private final double y; // y-coordinate

 public Point(double x0, double y0) {
 x = x0;
 y = y0;
 }

 ...
}

constructor name
matches name of class

instance variables of
object being constructed

Point implementation: instance methods

Instance methods. Define data-type operations.

・Similar to static methods (arguments, return type, and body).

・But can refer to instance variables (and no static keyword).

10

public class Point {
 ...

 // returns the Euclidean distance between the two points
 public double distanceTo(Point other) {

 double dx = other.x - x;
 double dy = other.y - y;
 return Math.sqrt(dx*dx + dy*dy);
 }

 // returns a string representation of this point
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

 ...
}

instance variables

constructors

instance methods

test client

instance variable
of invoking object

instance variable
of argument object

public class Point {

 private final double x; // x-coordinate
 private final double y; // y-coordinate

 // creates and initializes a point with given (x0, y0)
 public Point(double x0, double y0) {
 x = x0;
 y = y0;
 }

 // return the Euclidean distance between the two points
 public double distanceTo(Point other) {
 double dx = other.x - x;
 double dy = other.y - y;
 return Math.sqrt(dx*dx + dy*dy);
 }

 // return string representation of this point
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

 public static void main(String[] args) {
 Point p = new Point(4.0, 4.0);
 Point q = new Point(8.0, 1.0);
 StdOut.println("p = " + p);
 StdOut.println("q = " + q);
 StdOut.println("dist(p, q) = " + p.distanceTo(q));
 }
}

Anatomy of a Java class

11

instance
variables

constructor

instance
methods

test client

text file named Point.java

Suppose that you make the follow modification to the constructor. What is the effect? 

A. Still works.

B. The x- and y-coordinates are initialized to 0.

C. Run-time error.

D. Compile-time error.  

 

 

 
 
Default initialization. Instance variables are automatically initialized to default values.
 
Common bug pattern. Declaring local variables with same name as instance variables.

Creating data types: quiz 1

12

public class Point {
 private double x; // x-coordinate
 private double y; // y-coordinate

 public Point(double x0, double y0) {
 double x = x0;
 double y = y0;
 }

 ...
}

variable “shadowing”

like array elements
(but unlike local variables)

3.2 CREATING DATA TYPES

‣ point data type

‣ circle data type

‣ clock data type

‣ complex number data type
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

A data type for circles

A circle is the set of all points that are at a given distance from a point.
 
The Circle data type us to write programs that manipulate circles.

14

public class Circle description

 Circle(Point c, double r) create circle with center c and radius r

 double area() area of this circle

boolean contains(Point p) is point p inside the circle?

 String toString() string representation of this circle

API

values

circle location (x, y) radius (r)

c1 (2, 2) 2

c2 (6, 2) 1
x

y

(x1, y1)

r1
r2

(x2, y2)

Circle implementation: test client

Best practice. Begin by implementing a simple test client.

15

~/cos126/oop2> java-introcs Circle
p = (5.0, 5.0)
c1 = (2.0, 2.0), 2.0
c2 = (6.0, 2.0), 1.0
area(c2) = 3.141592653589793
contains(c1, p) = false

public static void main(String[] args) {
 Point p = new Point(5.0, 5.0);
 Circle c1 = new Circle(2.0, 2.0, 2.0);
 Circle c2 = new Circle(6.0, 2.0, 1.0);
 StdOut.println("p = " + p);
 StdOut.println("c1 = " + c1);
 StdOut.println("c2 = " + c2);
 StdOut.println("area(c2) = " + c2.area());
 StdOut.println("contains(c1, p) = " + c1.contains(p));
}

automatically invokes
c.toString()

instance variables

constructors

instance methods

test client

two circles and a point

x

y
p

Circle implementation: instance variables

Instance variables. Define data type values.
Internal representation. A point (center) and a real number (radius).
 
 
 
 
 
 
 
 
 
 
The type of an instance variable can be any

・Primitive type.

・Built-in reference type.

・User-defined reference type.
16

public class Circle {
 private final Point center; // center of circle
 private final double radius; // radius of circle
 ...
}

instance variables

constructors

instance methods

test client

instance variable
is of type Point

int, double, boolean, …

String, Color, int[], …

Point, Circle, Picture, …

Circle implementation: constructor

Constructor. Create and initialize new objects.

17

public class Circle {
 private final Point center; // center of circle
 private final double radius; // radius of circle

 public Circle(double x, double y, double r) {
 center = new Point(x, y);
 radius = r;
 }

 ...
}

instance variables of
object being constructed

instance variables

constructors

instance methods

test client

Circle implementation: instance methods

Instance methods. Define data-type operations.

18

public class Circle {
 ...

 // area of this circle
 public double area() {
 return Math.PI * radius * radius;
 }

 // is the point p contained inside this circle?
 public boolean contains(Point p) {
 return p.distanceTo(center) <= radius;
 }

 // string representation of this circle
 public String toString() {
 return center + ", " + radius;
 }

 ...
}

instance variables

constructors

instance methods

test client

calls a Point
instance method

takes a Point
object as argument

circle contains point if distance
from p to center ≤ radius

x

y
p

public class Circle {

 private final Point center; // center of circle
 private final double radius; // radius of circle

 public Circle(double x, double y, double r) {
 center = new Point(x, y);
 radius = r;
 }

 // area of this circle
 public double area() {
 return Math.PI * radius * radius;
 }

 // is the point p contained inside this circle?
 public boolean contains(Point p) {
 return p.distanceTo(center) <= radius;
 }

 // string representation of this circle
 public String toString() {
 return center + ", " + radius;
 }

}

Circle implementation

19

instance
variables

constructor

instance
methods

text file named Circle.java

How to implement a method that checks whether two circles intersect?  

A.  

 

B.  

 

 

C. Both A and B.  

D. Neither A nor B.

Creating data types: quiz 2

20

public boolean intersects(Circle circle) {
 return center.distanceTo(circle.center) <= radius + circle.radius;
}

public boolean intersects(Circle circle) {
 return circle.distanceTo(center) <= radius + circle.radius;
}

r1

r2

two circles intersect if the distance
between their centers ≤ sum of their radii

no such instance method
in Circle class

can access instance variables
of any object in same class

3.2 CREATING DATA TYPES

‣ point data type

‣ circle data type

‣ clock data type

‣ complex number data type
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

24-hour clock

A 24-hour clock displays the time in hh:mm format.

22

24-hour clock 12-hour clock description

00:00 12:00am midnight

12:00 12:00pm noon

23:59 11:59pm one minute before midnight

01:00 1:00am one hour after midnight

13:26 1:26pm 4 minutes before class starts

24:01 — invalid time

24-hour clock API

A 24-hour clock displays the time in hh:mm format.

23

public class Clock description

 Clock(int h, int m) create clock with h hours and m minutes

 void tic() advance the time by one minute

boolean isEarlierThan(Clock other) is the time of this clock earlier than other

 String toString() string representation of this clock

 void speak() say the time

 void draw() draw the clock

API

values

time hours minutes

13:26 13 26

23:59 23 59

mutable (data-type value can change)

Clock implementation: test client

Best practice. Begin by implementing a simple test client.

24

public static void main(String[] args) {
 Clock now = new Clock(13, 30);
 Clock end = new Clock(14, 50);
 while (now.isEarlierThan(end)) {
 StdOut.println(now);
 now.tic();
 }
}

~/cos126/oop2> java-introcs Clock
13:30
13:31
13:32
...
14:48
14:49

instance variables

constructors

instance methods

test client

Clock implementation: instance variables

Instance variables. Define data type values.
Internal representation. Two integers (hours and minutes).

25

public class Clock {

 private int hours; // hours (0 to 23)
 private int minutes; // minutes (0 to 59)

 ...
}

instance variables

constructors

instance methods

test client
one variable
per object

each clock has it own time
(so needs its own variables)

Clock implementation: constructor

Constructors. Create and initialize new objects.

26

instance variables

constructors

instance methods

test client

public class Clock {

 private int hours; // hours (0 to 23)
 private int minutes; // minutes (0 to 59)

 public Clock(int h, int m) {
 hours = h;
 minutes = m;
 }

 ...
}

Clock implementation: instance methods

Instance methods. Define data-type operations.

27

public class Clock {
 private static final int MINUTES_PER_HOUR = 60;
 private static final int HOURS_PER_DAY = 24;
 ...

 // increment the time by 1 minute
 public void tic() {
 minutes++;
 if (minutes == MINUTES_PER_HOUR) {
 minutes = 0;
 hours++;
 }
 if (hours == HOURS_PER_DAY) {
 hours = 0;
 }
 }

 ...
}

instance variables

constructors

instance methods

test client

class constants
(one variable per class)

Clock implementation: instance methods

Instance methods. Define data-type operations.

28

public class Clock {
 ...

 // is this clock earlier than the other one?
 public boolean isEarlierThan(Clock other) {
 if (hours < other.hours) return true;
 if (hours > other.hours) return false;
 return minutes < other.minutes;
 }

 // string representation, using format HH:MM
 public String toString() {
 return String.format("%02d:%02d", hours, minutes);
 }

 ...
}

instance variables

constructors

instance methods

test client

format() works like printf(),
but returns formatted string

(instead of printing it)

public class Clock {
 private static final int MINUTES_PER_HOUR = 60;
 private static final int HOURS_PER_DAY = 24;

 private int hours; // hours (between 0 and 23)
 private int minutes; // minutes (between 0 and 59)

 public Clock(int h, int m) {
 hours = h;
 minutes = m;
 }

 // increment the time by 1 minute
 public void tic() {
 minutes++;
 if (minutes == MINUTES_PER_HOUR) {
 minutes = 0;
 hours++;
 }
 if (hours == HOURS_PER_DAY) {
 hours = 0;
 }
 }

 // string representation, using format HH:MM
 public String toString() {
 return String.format("%02d:%02d", hours, minutes);
 }

Clock implementation

29

instance
variables

constructor

instance
methods

text file named Clock.java

 ...

 // is this clock earlier than the other one?
 public boolean isEarlierThan(Clock other) {
 if (hours < other.hours) return true;
 if (hours > other.hours) return false;
 return minutes < other.minutes;
 }

 public static void main(String[] args) {
 Clock clock1 = new Clock(13, 26);
 Clock clock2 = new Clock(13, 26);
 for (int time = 0; time < 1440; time++) {
 clock1.tic();
 clock2.tic();
 StdOut.println(clock1);
 }

}

class
constants

3.2 CREATING DATA TYPES

‣ point data type

‣ circle data type

‣ clock data type

‣ complex number data type
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Crash course in complex numbers

A complex number is a number of the form , where and are real and .

・Quintessential mathematical abstraction.

・Applications in STEM: signal processing, electrical circuits, quantum mechanics, …
 
Operations on complex numbers.

・Addition:	 .

・Multiplication: .

・Magnitude:	

・…

a + bi a b i = −1

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) × (c + di) = (ac − bd) + (bc + ad)i

a + bi = a2 + b2

31

operation result

(3 + 4i) + (−2 + 3i) 1 + 7i

(3 + 4i) × (−2 + 3i) −18 + i

53 + 4i

Data type for complex numbers

A complex number is a number of the form , where and are real and .
 
The Complex data type allows us to write programs that manipulate complex numbers.

a + bi a b i = −1

32

public class Complex description

 Complex(double real, double imag) create a new complex number

 Complex plus(Complex b) sum of this number and b

 Complex times(Complex b) product of this number and b

 double abs() magnitude

 String toString() string representation

complex number

3 + 4i

−2 + 2i

126i

API

values

Complex number implementation: test client

Best practice. Begin by implementing a simple test client.

33

public static void main(String[] args) {
 Complex a = new Complex(3.0, 4.0);
 Complex b = new Complex(-2.0, 3.0);
 StdOut.println("a = " + a);
 StdOut.println("b = " + b);
 StdOut.println("a + b = " + a.plus(b));
 StdOut.println("a * b = " + a.times(b));
 StdOut.println("|a| = " + a.abs());
}

~/cos126/oop2> java-introcs Complex

a = 3.0 + 4.0i
b = -2.0 + 3.0i
a + b = 1.0 + 7.0i
a * b = -18.0 + 1.0i
|a| = 5.0

instance variables

constructors

instance methods

test client

what we expect, once the
the implementation is done

Complex number implementation: instance variables and constructor

Instance variables. Define data-type values.
Internal representation. Two real numbers (real and imaginary components).
 
Constructors. Create and initialize new objects.

34

public class Complex {

 private final double re;
 private final double im;

 public Complex(double real, double imag) {
 re = real;
 im = imag;
 }

 ...
}

instance variables

constructors

instance methods

test client

each complex number has its own value
(so needs its own variables)

Complex number implementation: instance methods

Instance methods. Define data-type operations.

35

public class Complex {
 ...

 public Complex plus(Complex b) {
 double real = re + b.re;
 double imag = im + b.im;
 return new Complex(real, imag);
 }

 public Complex times(Complex b) {
 double real = re * b.re - im * b.im;
 double imag = re * b.im + im * b.re;
 return new Complex(real, imag);
 }

 public double abs() {
 return Math.sqrt(re*re + im*im);
 }

 public String toString() {
 return re + " + " + im + "i";
 }

}

creates and returns
a new Complex object

can access instance variables of any
object in class by using . operator

could be improved (e.g., if real part is 0 or imaginary part is negative)

instance variables

constructors

instance methods

test client

public class Complex {

 private final double re;
 private final double im;

 // creates a new complex object
 public Complex(double real, double imag) {
 re = real;
 im = imag;
 }

 // sum of two complex numbers
 public Complex plus(Complex b) {
 double real = re + b.re;
 double imag = im + b.im;
 return new Complex(real, imag);
 }

 // product of two complex numbers
 public Complex times(Complex b) {
 double real = re * b.re - im * b.im;
 double imag = re * b.im + im * b.re;
 return new Complex(real, imag);
 }

 ...

Complex implementation

36

instance
variables

constructor

instance
methods

 // magnitude
 public double abs() {
 return Math.sqrt(re*re + im*im);
 }

 // string representation
 public String toString() {
 return re + " + " + im + "i";
 }

 // test client
 public static void main(String[] args) {
 Complex a = new Complex(3.0, 4.0);
 Complex b = new Complex(-2.0, 3.0);
 StdOut.println("a = " + a);
 StdOut.println("b = " + b);
 StdOut.println("a + b = " + a.plus(b));
 StdOut.println("a * b = " + a.times(b));
 StdOut.println("|a| = " + a.abs());
 }
}

test client

OOP summary

Object-oriented programming.

・Create your own data types.

・Use data types in your programs.
 
 
OOP helps us simulate the physical world.

・Java objects model real-world objects.

・Not always easy to make model reflect reality.

・Ex: clock, molecule, color, image, sound, genome, …
 
 
OOP helps us extend the Java language.

・Java doesn’t have a data type for every conceivable application.

・Data types enable us to add our own abstractions.

・Ex: point, circle, complex number, vector, polynomial, …

37

set of values and
operations on those values

x

y

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

OOP Dice Adobe Stock education license

3D Model of DNA Molecule Adobe Stock education license

Digital Clock Wikimedia CC BY 3.0

OOP Adobe Stock education license

Imaginary Number Adobe Stock education license

https://stock.adobe.com/images/top-secret-word/30591486
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/3d-model-of-dna-molecule/590111366
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:DigitalClock.svg
https://creativecommons.org/licenses/by/3.0/deed.en
https://stock.adobe.com/images/oop-object-oriented-programming-acronym-business-concept-background-vector-illustration-concept-with-keywords-and-icons-lettering-illustration-with-icons-for-web-banner-flyer-landing/451520975
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/imaginary-number-on-green-chalkboard-vector/122905273
https://stock.adobe.com/enterprise-conditions#educationLicenses

