
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/10/24 10:35  AM

3.1 USING DATA TYPES

‣ overview

‣ string processing

‣ color

‣ image processing

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

2

any program you might want to write

objects

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops

functions libraries

objects

use data types that represent
strings, colors, pictures, …

3.1 USING DATA TYPES

‣ overview

‣ string processing

‣ color

‣ image processing
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Primitive data types

A data type is a set of values and a set of operations on those values.
 
Primitive types.

・Values map directly to machine representations.

・Operations map directly to machine instructions.

4

primitive type set of values example values operations

int integers
17

-12345 add, subtract, multiply, divide, …

double floating-point numbers
2.5

-0.125 add, subtract, multiply, divide, …

boolean truth values
true
false and, or, not, …

⋮ ⋮ ⋮ ⋮

Reference data types

Goal. Write programs that process other types of data.

・Strings, colors, pictures, …

・Points, circles, complex numbers, vectors, matrices, …

・GUIs, database connections, neural networks, plots, …

5

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

reference type set of values example values operations source logo

String sequences of characters
"Hello, World"

“COS 126 is fun"
length, concatenate, compare,
extract substring, search, … Java language

Color three 8-bit integers
get RGB component,
brighter, darker, …

Java library

Picture 2D array of colors
get/set color of pixel,

width, height, show, save, …
textbook library

⋮ ⋮ ⋮ ⋮

Object-oriented programming (OOP)

Goal. Write programs that process other types of data.

・Strings, colors, pictures, …

・Points, circles, complex numbers, vectors, matrices, …

・GUIs, database connections, neural networks, plots, …
 
 
This lecture.	 Use pre-existing data types.
Next lecture.	 Create your own data types.  
 

6

OOP empowers you
to do this (and more!)

Using data types: quiz 1

Which reference data types have we encountered in this course so far?

A. Arrays.

B. Strings.

C. Both A and B.

D. Neither A nor B.

7

but we haven’t used its OOP features (yet)

explains why a function can change
the elements in an array

Using a reference data type: constructors and instance methods

To construct a new object:

・Use the keyword new to invoke a constructor.

・Use data type name to specify type of object to construct.

・Include any arguments.
 
To apply an operation to a given object:

・Use an object reference to specify which object.

・Use the dot operator.

・Use a method name to specify which operation.

・Include any arguments.

8

Color magenta;

magenta = new Color(255, 0, 255) ;

int r = magenta . getRed();

declare a reference variable
(that holds an object reference) invoke a constructor

(to create a new object)

call an instance method
(that operates on the object’s value)

variable holds
an object reference

3.1 USING DATA TYPES

‣ overview

‣ string processing

‣ color

‣ image processing
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The String and char data types

A character is an individual letter, number, or symbol.
A string is a sequence of characters.
 
Important fundamental abstraction.

・Programming systems (e.g., Java code).

・Communication systems (e.g., text messages).

・Genomic sequences.

・…

 
 
 
 
 
 
Note. Java provides special syntax for creating String objects.

10

type set of values example values operations

char characters
'A' 'B' 'C'

'6' '!' 'ǎ' compare

String
sequences

of characters
"Hello, World"

"Nǐ hǎo"
length, concatenate, compare,
extract substring, search, …

0 1 2 3 4 5 6 7 8 9 10 11 12

T A G A T G T G C T A G C

a DNA string

string literals and + operator
(instead of new)

String API

String data type. Java includes a String data type for manipulating strings.

11

public class String description

 String(char[] values) create new string from character array

 int length() length of string

 char charAt(int i) character at index i

boolean startsWith(String pre) does string start with pre ?

boolean endsWith(String post) does string end with post ?

boolean equals(Object obj) do two strings correspond to same sequence of characters?

 int indexOf(String t) index of first occurrence of t

 int lastIndexOf(String t) index of last occurrence of t

 String concat(String t) concatenation of this string and t

 String substring(int i, int j) substring containing characters at indices i through j-1

 String replace(char from, char to) replace all occurrence of character from with to

 ⋮ ⋮

creates and returns a new String
(does not mutate existing string)

typically use + operator instead

computation Java code examples

is the string a palindrome?
(string equal to its reverse)

public static boolean isPalindrome(String s) {
 int n = s.length();
 for (int i = 0; i < n/2; i++)
 if (s.charAt(i) != s.charAt(n-1-i))
 return false;
 return true;
}

translate from DNA to mRNA
(replace letter ‘T’ with ‘U’)

public static String translate(String dna) {
 String rna = dna.replace('T', 'U');
 return rna;
}

extract base and extension
from filename

String filename = args[0];
int dot = filename.lastIndexOf(".");
String base = filename.substring(0, dot);
String extension = filename.substring(dot + 1, s.length());

Examples of using the String data type

12

arch.jpg

base extension

yes no

"noon" "126"

"ACTATCA" "ACTA"

DNA mRNA

"ACTG" "ACUG"

"TTTAG" "UUUAG"

Using data types: quiz 2

Which is the the result of executing the following code fragment?

A. I*E

B. I*ER

C. TI*ER

D. TIGER

E. Run-time exception

13

if code were s = s.substring(1, 4)
String s = "TIGER";
s.substring(1, 4);
s = s.replace('G', '*');
StdOut.println(s);

Identifying a potential gene

Pre-genomics era. Sequence a human genome.
Post-genomics era. Analyze the data and understand structure.
 
Genomics. Represent genome as a string over A C T G alphabet.
 
Gene. A substring of genome that represents a functional unit.

・Made up of codons (three A C T G nucleotides).

・Begins with start codon (A T G).

・Ends with a stop codon (T A G , T A A , or T G A).

・No intervening stop codons.

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A T G C A T A G C G C A T A G

start stopno intervening stop codons

DNA sequence potential gene?

ATGCATAGCGCATAG yes

ATGCGCTGCGTCTGTACTAG no

ATGCCGTGACGTCTGTACTAG no

intervening
stop codon

20 nucleotides
(not a multiple of 3)

Identifying a potential gene

Goal. Determine whether a given DNA string is a potential gene.

15

public static boolean isPotentialGene(String dna) {

 if (dna.length() % 3 != 0) return false;

 if (!dna.startsWith("ATG")) return false;

 for (int i = 3; i < dna.length() - 3; i += 3) {
 String codon = dna.substring(i, i+3);
 if (codon.equals("TAA")) return false;
 if (codon.equals("TAG")) return false;
 if (codon.equals("TGA")) return false;
 }

 if (dna.endsWith("TAA")) return true;
 if (dna.endsWith("TAG")) return true;
 if (dna.endsWith("TGA")) return true;
 return false;
}

length is not a multiple of 3

does not begin with a start codon

ends with a stop codon

intervening stop codons

3.1 USING DATA TYPES

‣ overview

‣ string processing

‣ color

‣ image processing
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Review: RGB color model

Color is a sensation in the eye from electromagnetic radiation.
 
RGB color model. Popular format for representing color on digital displays.

・Color is composed of red, green, and blue components.

・Each color component is an integer between 0 to 255.

17

name red green blue color

red 255 0 0

green 0 255 0

blue 0 0 255

black 0 0 0

white 255 255 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

book blue 0 64 128

Color API

Color data type. Java includes a Color data type for manipulating colors.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Java library. It’s located in java.awt.Color, so you need an import statement to use.

18

public class Color description

 Color(int r, int g, int b) create a new color with given RGB components

 int getRed() red intensity

 int getGreen() green intensity

 int getBlue() blue intensity

 Color brigter() brighter version of this color

 Color darker() darker version of this color

boolean equals(Object other) do the two color objects correspond to same RGB values?

 String toString() string representation of this color

 ⋮ ⋮

Albers squares

Josef Albers. A 20th century artist who revolutionized the way people think about color.

19

Josef Albers

Homage to the Square (series)

~/cos126/oop1> java-introcs AlbersSquares 251 112 34 177 153 71~/cos126/oop1> java-introcs AlbersSquares 28 183 122 15 117 123

Goal. Write a Java program to generate Albers squares.

Albers squares

20

~/cos126/oop1> java-introcs AlbersSquares 0 64 128 105 105 105

(r1, g1, b1) (r2, g2, b2)

Albers squares implementation

21

0.25

0.2

0.5

0.75

0.1

import java.awt.Color;

public class AlbersSquares {
 public static void main(String[] args) {

 int r1 = Integer.parseInt(args[0]);
 int g1 = Integer.parseInt(args[1]);
 int b1 = Integer.parseInt(args[2]);
 Color c1 = new Color(r1, g1, b1);

 int r2 = Integer.parseInt(args[3]);
 int g2 = Integer.parseInt(args[4]);
 int b2 = Integer.parseInt(args[5]);
 Color c2 = new Color(r2, g2, b2);

 StdDraw.setPenColor(c1);
 StdDraw.filledSquare(0.25, 0.5, 0.2);
 StdDraw.setPenColor(c2);
 StdDraw.filledSquare(0.25, 0.5, 0.1);

 StdDraw.setPenColor(c2);
 StdDraw.filledSquare(0.75, 0.5, 0.2);
 StdDraw.setPenColor(c1);
 StdDraw.filledSquare(0.75, 0.5, 0.1);
 }
}

draw first pair of squares

create second Color object

create first Color object

pass Color object to StdDraw.setPenColor()

Monochrome luminance

Def. The luminance of a color quantifies its effective brightness.
Standard formula. Y = 0.299 R + 0.587 G + 0.114 B.

22

import java.awt.Color;

public class Luminance {

 public static double intensity(Color color) {
 int r = color.getRed();
 int g = color.getGreen();
 int b = color.getBlue();
 return 0.299*r + 0.587*g + 0.114*b;
 }

 public static void main(String[] args) {
 int r = Integer.parseInt(args[0]);
 int g = Integer.parseInt(args[1]);
 int b = Integer.parseInt(args[2]);
 Color color = new Color(r, g, b);
 StdOut.println(intensity(color));
 }
}

name R G B color lum

red 255 0 0 76.245

green 0 255 0 149.685

blue 0 0 255 29.07

black 0 0 0 0.0

white 255 255 255 255.0

book blue 0 64 128 52.16

~/cos126/oop1> java-introcs Luminance 255 0 0
76.245

~/cos126/oop1> java-introcs Luminance 0 64 128
52.16

on a scale of 0 (black) to 255 (white)

function takes a Color
object as an argument

pure green appears lighter than pure blue
(so give higher weight)

Foreground/background color accessibility

Goal. Determine whether text in one color will be readable if background is in another color.
Application. Make web content accessible.
 
Web standard. Readable if contrast ratio .

lummax + 0.05
lummin + 0.05

≥ 4.5

23

public static double contrastRatio(Color a, Color b) {
 double min = Math.min(intensity(a), intensity(b)) / 255.0;
 double max = Math.max(intensity(a), intensity(b)) / 255.0;
 return (max + 0.05) / (min + 0.05);
}

public static boolean isAccessible(Color a, Color b) {
 return contrastRatio(a, b) >= 4.5;
}

1.7 1.7

2.1 2.1

3.0 3.0

8.6 8.6

21 21

contrast ratios
(between 1 and 21)

WCAG uses relative luminance,
not monochrome luminance

Luminance.java

Web Content
Accessibility Guidelines

normalized to be
between 0 and 1

https://www.w3.org/TR/WCAG20/

Grayscale

Goal. Convert color image to grayscale.

・RGB color is gray when R = G = B.

・To convert RGB color to grayscale, use luminance for R, G, and B.

24

name R G B color lum gray

red 255 0 0 76.245

green 0 255 0 149.685

blue 0 0 255 29.07

black 0 0 0 0.0

white 255 255 255 255.0

book blue 0 64 128 52.16

public static Color toGray(Color c) {
 int y = (int) Math.round(intensity(c));
 Color gray = new Color(y, y, y);
 return gray;
}

round to
nearest int

Luminance.java

Object references: memory representation

Object reference. Refers to a data-type value; it is not the value.

・Can manipulate the value in the object it refers to.

・Can use it to invoke instance methods (with the . operator).

・Can pass it to (or return it from) a method.

25

object reference
(memory address of object)

Color red = new Color(255, 0, 0);

Color gray = new Color(105, 105, 105);

Color color = red;

the reference variables
red, gray, and color
store object references

330

255 0 0

288

105 105 105

red

330

gray

288

color

330

color and red
are now “aliases”

can think of an object reference
as the memory address of an object

memory
address

memory representation
(using poetic license)

memory
contents

Object references: box-and-pointer diagrams

Box-and-pointer diagram.

・Put each object and reference variable in a box.

・Draw an arrow from each reference variable to the object it references.

26

Color red = new Color(255, 0, 0);

Color gray = new Color(105, 105, 105);

Color color = red;

255 0 0

red color

105 105 105

gray

Using data types: quiz 3

Assume that the variables red1 , red2 , and red3 are initialized as follows.  
Which of the following expressions will evaluate to false ?

A. red1 == red3

B. red2 == red3

C. red1.equals(red3)

D. red2.equals(red3)

27

Color red1 = new Color(255, 0, 0);

Color red2 = new Color(255, 0, 0);

Color red3 = red1;

255 0 0

red1 red3

255 0 0

red2

object reference equality
(same memory address)

object value equality
(same RGB values)

References and abstraction

René Magritte. “This is not a pipe.”
 
 
 
 
 
 
 
 
Java. These are not colors.
 
 
 
 
 
OOP. A natural vehicle for studying abstract models of the real world.

28

it is a picture of
a painting of a pipe

Color red = new Color(255, 0, 0);
Color gray = new Color(105, 105, 105);

they are Java
representations of colors

“ For me, abstraction is real,

 probably more real than nature.”

 —Josef Albers

This is not a pipe memes

29

3.1 USING DATA TYPES

‣ overview

‣ string processing

‣ color

‣ image processing
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Input and output data types

You have used. StdIn, StdOut, StdDraw, and StdPicture.
Key limitation. Only one entity per program.
 
 
 
 
OOP versions. We also provide object-oriented versions.

31

data type enables

In read from more than one input stream

Out write to more than one output stream

Draw create more than one drawing

Picture process more than one image

one input stream, output stream,
drawing, or picture

per program execution

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

available with javac-introcs
and java-introcs commands

Image processing: review

A picture is a width-by-height grid of pixels; each pixel has an RGB color.
 
Ex.

32

!"#$%
!&'%()*'+"

+",-.

!"#$%
!/()/"

.$"0.-
&'%

*'+

!"#$%
!&'%1#()*'+$#"

mandrill.jpg arch.jpg

Picture API

Picture data type. Our textbook data type for manipulating digital images.

・Can create many Picture objects in same program.

・Uses Color objects as arguments and return values.

33

public class Picture description

 Picture(String filename) create a picture from an image file

 Picture(int width, int height) create a blank width-by-height picture

 int width() width of the picture

 int height() height of the picture

Color get(int col, int row) the color of pixel (col, row)

 void set(int col, int row, Color color) set the color of pixel (col, row) to color

 void show() display the image in its own window

 void save(String filename) save the picture to a file

OOP version of StdPicture
(with a few important differences)

R O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

supported file formats:
JPEG, PNG, GIF, TIFF, BMP

Goal. Write a Java program to convert an image to grayscale.

~cos126/oop1> java-introcs Picture mandrill.jpg ~cos126/oop1> java-introcs Grayscale mandrill.jpg

Grayscale filter

34

import java.awt.Color;

public class Grayscale {
 public static void main(String[] args) {

 Picture picture = new Picture(args[0]);

 for (int col = 0; col < picture.width(); col++) {
 for (int row = 0; row < picture.height(); row++) {
 Color color = picture.get(col, row);
 Color gray = Luminance.toGray(color);
 picture.set(col, row, gray);
 }
 }

 picture.show();

 }
}

Grayscale filter implementation: object-oriented version

35

create a new picture
from image file

display picture
(in its own window)

change each pixel to grayscale

Goal. Write a Java program to create a right-rotated (90° clockwise) version of an image.
Note. Need two Picture objects (since they are of different dimensions).

~cos126/oop1> java-introcs RightRotation shield.jpg

Rotate an image

36

~cos126/oop1> java-introcs Picture shield.jpg

Rotate an image right: demo

Goal. Rotate an image right (90° clockwise).

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

37

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

source image (6-by-4)

Rotate an image right: demo

Goal. Rotate an image right (90° clockwise).

38

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(0, 0)
(1, 0)

(2, 0)
(3, 0)

(4, 0)
(5, 0)

(0, 1)
(1, 1)

(2, 1)
(3, 1)

(4, 1)
(5, 1)

(0, 2)
(1, 2)

(2, 2)
(3, 2)

(4, 2)
(5, 2)

(0, 3)
(1, 3)

(2, 3)
(3, 3)

(4, 3)
(5, 3)

Algorithm. Pixel (col, row) in source image becomes to pixel (height − row − 1, col) in target image.

source image (6-by-4)

target image (4-by-6)

import java.awt.Color;

public class RightRotation {
 public static void main(String[] args) {

 Picture source = new Picture(args[0]);
 int width = source.width();
 int height = source.height();

 Picture target = new Picture(height, width);

 for (int col = 0; col < width; col++) {
 for (int row = 0; row < height; row++) {
 Color color = source.get(col, row);
 target.set(height - row - 1, col, color);
 }
 }

 source.show();
 target.show();
 }
}

Right rotate an image implementation

39

create picture from file
(and get dimensions)

display each picture
(in its own window)

create a new picture
(of appropriate dimensions)

process each pixel

Using data types: quiz 4

Fill in the missing code to left rotate (90° counterclockwise) an image?

A. target.set(col, row, color);

B. target.set(row, col, color);

C. target.set(height - row - 1, col, color);

D. target.set(row, width - col - 1, color);

40

for (int col = 0; col < width; col++) {
 for (int row = 0; row < height; row++) {
 Color color = source.get(col, row);
 target.set(row, width - col - 1, color);
 }
}

More image-processing effects

41

emboss LaplacianGaussian blur sharpen motion blur

original

More image-processing effects

42

glass filter Sobel edge detectionwave filter

RGB color separation

swirl filter rescale

Data types

Object-oriented programming.

・Create your own data types.

・Construct and use objects in your programs.
 
In Java, programs manipulate object references.

・Almost all data types in Java are are reference types.

・Exceptions: primitive types.

・OOP purist: languages should have only reference types.
 
This lecture. Use pre-existing data types (for strings, colors, and pictures).
Next lecture. Create your own data types.

43

T A G A T G T G C T A G C

String, Color, Picture, arrays, …

int, double, boolean, char, …

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

Binary Code of Digital Images Adobe Stock education license

CPU Icon Adobe Stock education license

OOP Dice Adobe Stock education license

Molecular Structure of DNA Adobe Stock education license

RGB Color Model Wikimedia Kopimi

LGBTQ+ Eye Christian Ibarra Santillan CC BY 2.0

Josef Albers Arnold Newman

Homage to the Square Josef Albers

https://stock.adobe.com/images/binary-code-stores-informations-of-digital-images/39520089
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/electronic-microchip-cpu-icon/288573401
https://stock.adobe.com/images/electronic-microchip-cpu-icon/288573401
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/molecular-structure-of-dna-and-rna-infographic-educational-vector-illustration/194228176
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:RGB_color_model.svg
https://en.wikipedia.org/wiki/Piratbyr%C3%A5n#Kopimi
https://commons.wikimedia.org/wiki/File:LGBTQ+_Eye_(49620315828).jpg
https://creativecommons.org/licenses/by/2.0/
https://www.britannica.com/biography/Josef-Albers#/media/1/12662/8245
https://en.wikipedia.org/wiki/Homage_to_the_Square

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

image source license

WCAG 2.0 Compliant REMOTEi

The Treachery of Images René Magritte

Surrealist Painter and Plumber Dan Piraro Educational use

Select All Squares with Pipes Noah Veltman

Image Processing Icon Adobe Stock education license

Mandrill SIPI Image Database

Johnson Arch Danielle Alio Capparella by photographer

Princeton Shield Wikimedia public domain

https://www.lacma.org/art/exhibition/magritte-and-contemporary-art-treachery-images
https://www.bizarro.com
https://www.bizarro.com/faqs
https://twitter.com/veltman/status/1420497351672680452/photo/1
https://stock.adobe.com/images/image-processing-flat-icon/420702399
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://sipi.usc.edu/database/database.php?volume=misc
https://reunions.princeton.edu/project/campus/
https://commons.wikimedia.org/wiki/File:Princeton_seal.svg
https://en.wikipedia.org/wiki/Public_domain

