
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/10/24 10:30  AM

2.2 LIBRARIES AND CLIENTS

‣ random number library

‣ designing libraries

‣ sound synthesis

‣ synthesizer library

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

2

any program you might want to write

objects

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops

functions librarieslibraries

build reusable libraries

2.2 LIBRARIES AND CLIENTS

‣ random number library

‣ designing libraries

‣ sound synthesis

‣ synthesizer library
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://xkcd.com/221/

https://introcs.cs.princeton.edu
https://xkcd.com/221/
https://xkcd.com/221/

Standard random library

Goal. Design a library to generate pseudo-random numbers.

4

public class StdRandom

static double uniformDouble() real number between 0 and 1

static double uniformDouble(double lo, double hi) real number between lo and hi

static boolean bernoulli(double p) true with probability p, false otherwise

static int uniformInt(int n) integer between 0 and n-1

static double gaussian() normal with mean 0 and stddev 1

static double gaussian(double mu, double sigma) normal with mean mu and stddev sigma

static void shuffle(String[] a) shuffle the string array a[]

static int discrete(int[] freq) i with probability proportion to freq[i]

 ⋮ ⋮

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

public class StdRandom {

 public static double uniformDouble() {
 return Math.random();
 }

 public static double uniformDouble(double lo, double hi) {
 return lo + (uniformDouble() * (hi - lo));
 }

 public static boolean bernoulli(double p) {
 return uniformDouble() < p;
 }

 public static int uniformInt(int n) {
 return (int) (uniformDouble() * n);
 }

 ⋮

}

Standard random implementation: random numbers from various distributions

5

you could re-implement
these methods in each program,

 but now you don’t have to!

calls a method
(in the same class)

calls a method
(in a different class)

public class StdRandom {

 public static double gaussian() {
 double r, x, y;
 do {
 x = uniformDouble(-1.0, 1.0);
 y = uniformDouble(-1.0, 1.0);
 r = x*x + y*y;
 } while (r >= 1 || r == 0);
 return x * Math.sqrt(-2 * Math.log(r) / r);
 }

 public static double gaussian(double mu, double sigma) {
 return mu + gaussian() * sigma;
 }

 ⋮

}

Standard random implementation: random numbers from a Gaussian distribution

6

can call a method without
knowing how it is implemented

μσ

public class StdRandom {

 private static void exch(String[] a, int i, int j) {
 String temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }

 public static void shuffle(String[] a) {
 for (int i = 0; i < a.length; i++) {
 int r = uniformInt(i+1);
 exch(a, i, r);
 }
 }

 ⋮

}

Standard random implementation: shuffling the elements in an array

7

private helper method
(cannot be called from outside this class)

calls a private method
(in the same class)

Calling a library function

Calling from a client. Specify library name, dot operator, function name, and arguments.
 
 
 
 
 
 
 
 
 
 
Note. Must use fully qualified name if calling a function from another file.

8

StdRandom.uniformDouble(0.0, 1.0)method call
(from client)

library name method name arguments

dot operator

Standard random clients

9

public class RandomPoints {
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 for (int i = 0; i < n; i++) {
 double x = StdRandom.gaussian(0.5, 0.1);
 double y = StdRandom.gaussian(0.5, 0.1);
 StdDraw.point(x, y);
 }
 }
}

StdRandom client 2

public class Shuffle {
 public static void main(String[] args) {
 StdRandom.shuffle(args);
 for (int i = 0; i < args.length; i++) {
 StdOut.print(args[i] + " ");
 }
 StdOut.println();
 }
}

StdRandom client 1

~/cos126/libraries> java-introcs Shuffle A B C D E
E A D B C

~/cos126/libraries> java-introcs Shuffle A B C D E
C A E B D

~/cos126/libraries> java-introcs Shuffle 2C 2D 2H ... AS
4S 2D AC 9H QH 8C ... JS 4H 2S

~/cos126/libraries> java-introcs RandomPoints 100000

2.2 LIBRARIES AND CLIENTS

‣ random number library

‣ designing libraries

‣ sound synthesis

‣ synthesizer library
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Libraries

Def. A module is a set of functions stored in a single file.
Def. A library is a module whose primary purpose is for use by other programs.

11

definitions for this course

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

library description example method call source logo

StdRandom generate random numbers StdRandom.uniformInt(6)

textbook
StdDraw draw geometric shapes StdDraw.circle(0.5, 0.5, 0.25)

Math compute mathematical functions Math.sqrt(2.0)

Java system
java.util.Arrays manipulate arrays Arrays.sort(a)

Gaussian compute Gaussian pdf and cdf Gaussian.pdf(3.0)

user-defined
SayNumber speak numbers SayNumber.sayInteger(126)

⋮ ⋮ ⋮

Application programming interface (API). Specifies method headers and behavior for a library.
Implementation. Program that implements the methods in an API.
Client. Program that uses a library through its API.

API, client, and implementation

12

client API

contract between
client and implementation

 StdRandom.uniformInt(6);

 StdRandom.shuffle(args);

public class StdRandom

static int uniformInt(int n)

static void shuffle(String[] a)

		 ⋮

implementation

public class StdRandom {
 ...

 public static int uniformInt(int n) {
 ...
 }

 public static void shuffle(String[] a) {
 ...
 }

}

Application programming interface (API). Specifies method headers and behavior for a library.
Implementation. Program that implements the methods in an API.
Client. Program that uses a library through its API.

API, client, and implementation

13

client implementationAPI

Encapsulation

Encapsulation. Separating clients from implementation details by hiding information.
 
Principle. A client does not need to know how a method is implemented in order to use it.
 
Benefits.

・Can develop client code and implementation code independently.

・Can change implementation details without breaking clients.
 
Private access modifier. Designates a method as not for use by a client.

・API does not list private methods.

・Compile-time error for client to call a private method.

・Advantage: implementation can add/remove private methods without impacting clients.

14

Accessing a library

Java classpath. Places where Java looks for user-defined libraries (and other resources).

・Simplest: put library .class file in same directory as client program.

・Best practice: bundle library .class files in a .jar file; add .jar file to Java classpath.

15

~/cos126/libraries> javac Shuffle.java
Shuffle.java:3: error: cannot find symbol
 StdRandom.shuffle(args);

~/cos126/libraries> javac-introcs Shuffle.java

~/cos126/libraries> java-introcs Shuffle A B C D E
C A E B D

adds stdlib.jar
to Java classpath

stdlib.jar contains:
StdRandom.class
StdIn.class
StdOut.class
StdDraw.class
StdPicture.class
StdAudio.class

 ⋮

Unit testing

Best practice. Include a main() method in each class as a test client.

・Call each public method at least once.

・Use result to check behavior.

・Identify failed tests programmatically.

16

public class StdRandom {
 ⋮

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 for (int i = 0; i < n; i++) {
 StdOut.printf("%8.5f ", uniformDouble(10.0, 99.0));
 StdOut.printf("%5b " , bernoulli(0.5));
 StdOut.printf("%2d " , uniformInt(100));
 StdOut.printf("%7.5f ", gaussian(9.0, 0.2));
 StdOut.println();
 }
 ⋮

 }

}

~/cos126/libraries> java-introcs StdRandom 5
85.06009 false 8 8.88418
22.97440 true 40 9.18536
19.46492 false 28 8.89026
53.62835 true 90 8.90420
85.72239 false 5 8.78333
...

executes main()
defined in this class

minimum requirements
(in this course)

unit tests for shuffle()
and other methods

looks plausible
(between 0 and 99)

Method header comments

Best practice. Every method should include a comment before the method header.

・Describe it purpose.

・Use names of parameter variables in description.

・Identify parameters, return value, and exceptions using Javadoc tags.

17

/**
 * Returns a random integer uniformly in [0, n).
 *
 * @param n number of possible integers
 * @return a random integer uniformly between 0 (inclusive) and n (exclusive)
 */
public static int uniformInt(int n) {
 return (int) (Math.random() * n);
}

Javadoc tags

minimum requirements
(in this course)

Class StdRandom

Object
StdRandom

public final class StdRandom
extends Object

Overview. The StdRandom class provides static methods for generating random number from various discrete and continuous distributions, including
uniform, Bernoulli, geometric, Gaussian, exponential, Pareto, Poisson, and Cauchy. It also provides method for shuffling an array or subarray and
generating random permutations.

Conventions. By convention, all intervals are half open. For example, uniformDouble(-1.0, 1.0) returns a random number between -1.0
(inclusive) and 1.0 (exclusive). Similarly, shuffle(a, lo, hi) shuffles the hi - lo elements in the array a[], starting at index lo (inclusive) and
ending at index hi (exclusive).

Performance. The methods all take constant expected time, except those that involve arrays. The shuffle method takes time linear in the subarray to be
shuffled; the discrete methods take time linear in the length of the argument array.

Additional information. For additional documentation, see Section 2.2 of Computer Science: An Interdisciplinary Approach by Robert Sedgewick
and Kevin Wayne.

Author:

Robert Sedgewick, Kevin Wayne

Method Summary

Modifier and
Type

Method Description

static
boolean

bernoulli() Returns a random boolean from a Bernoulli distribution with success probability 1/2.

static
boolean

bernoulli(double p) Returns a random boolean from a Bernoulli distribution with success probability p.

static
double

cauchy() Returns a random real number from the Cauchy distribution.

static int discrete
(double[] probabilities)

Returns a random integer from the specified discrete distribution.

static int discrete(int[] frequencies) Returns a random integer from the specified discrete distribution.

static
double

exponential(double lambda) Returns a random real number from an exponential distribution with rate λ.

static
double

gaussian() Returns a random real number from a standard Gaussian distribution.

static
double

gaussian(double mu,
double sigma)

Returns a random real number from a Gaussian distribution with mean µ and
standard deviation σ.

static int geometric(double p) Returns a random integer from a geometric distribution with success probability p.

static long getSeed() Returns the seed of the pseudo-random number generator.

static void main(String[] args) Unit tests the methods in this class.

static
double

pareto() Returns a random real number from the standard Pareto distribution.

static
double

pareto(double alpha) Returns a random real number from a Pareto distribution with shape parameter α.

static int[] permutation(int n) Returns a uniformly random permutation of n elements.

static int[] permutation(int n, int k) Returns a uniformly random permutation of k of n elements.

static int poisson(double lambda) Returns a random integer from a Poisson distribution with mean λ.

static void setSeed(long s) Sets the seed of the pseudo-random number generator.

static void shuffle(char[] a) Rearranges the elements of the specified array in uniformly random order.

static void shuffle(double[] a) Rearranges the elements of the specified array in uniformly random order.

static void shuffle(double[] a, int lo,
int hi)

Rearranges the elements of the specified subarray in uniformly random order.

static void shuffle(int[] a) Rearranges the elements of the specified array in uniformly random order.

static void shuffle(int[] a, int lo,
int hi)

Rearranges the elements of the specified subarray in uniformly random order.

static void shuffle(Object[] a) Rearranges the elements of the specified array in uniformly random order.

static void shuffle(Object[] a, int lo,
int hi)

Rearranges the elements of the specified subarray in uniformly random order.

static
double

uniformDouble() Returns a random real number uniformly in [0, 1).

static
double

uniformDouble(double a,
double b)

Returns a random real number uniformly in [a, b).

static int uniformInt(int n) Returns a random integer uniformly in [0, n).

static int uniformInt(int a, int b) Returns a random integer uniformly in [a, b).

static long uniformLong(long n) Returns a random long integer uniformly in [0, n).

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

setSeed

public static void setSeed(long s)

Sets the seed of the pseudo-random number generator. This method enables you to produce the same sequence of "random" number for each
execution of the program. Ordinarily, you should call this method at most once per program.

Parameters:

s - the seed

getSeed

public static long getSeed()

Returns the seed of the pseudo-random number generator.

Returns:

the seed

uniformDouble

public static double uniformDouble()

Returns a random real number uniformly in [0, 1).

Returns:

a random real number uniformly in [0, 1)

uniformInt

public static int uniformInt(int n)

Returns a random integer uniformly in [0, n).

Parameters:

n - number of possible integers

Returns:

a random integer uniformly between 0 (inclusive) and n (exclusive)

Throws:

IllegalArgumentException - if n <= 0

uniformLong

public static long uniformLong(long n)

Returns a random long integer uniformly in [0, n).

Parameters:

n - number of possible long integers

Returns:

a random long integer uniformly between 0 (inclusive) and n (exclusive)

Throws:

IllegalArgumentException - if n <= 0

uniformInt

public static int uniformInt(int a, int b)

Returns a random integer uniformly in [a, b).

Parameters:

a - the left endpoint

b - the right endpoint

Returns:

a random integer uniformly in [a, b)

Throws:

IllegalArgumentException - if b <= a

IllegalArgumentException - if b - a >= Integer.MAX_VALUE

uniformDouble

public static double uniformDouble(double a, double b)

Returns a random real number uniformly in [a, b).

Parameters:

a - the left endpoint

b - the right endpoint

Returns:

a random real number uniformly in [a, b)

Throws:

IllegalArgumentException - unless a < b

bernoulli

public static boolean bernoulli(double p)

Returns a random boolean from a Bernoulli distribution with success probability p.

Parameters:

p - the probability of returning true

Returns:

true with probability p and false with probability 1 - p

Throws:

IllegalArgumentException - unless 0 ≤ p ≤ 1.0

bernoulli

public static boolean bernoulli()

Returns a random boolean from a Bernoulli distribution with success probability 1/2.

Returns:

true with probability 1/2 and false with probability 1/2

gaussian

public static double gaussian()

Returns a random real number from a standard Gaussian distribution.

Returns:

a random real number from a standard Gaussian distribution (mean 0 and standard deviation 1).

gaussian

public static double gaussian(double mu, double sigma)

Returns a random real number from a Gaussian distribution with mean µ and standard deviation σ.

Parameters:

mu - the mean

sigma - the standard deviation

Returns:

a real number distributed according to the Gaussian distribution with mean mu and standard deviation sigma

geometric

public static int geometric(double p)

Returns a random integer from a geometric distribution with success probability p. The integer represents the number of independent trials before
the first success.

Parameters:

p - the parameter of the geometric distribution

Returns:

a random integer from a geometric distribution with success probability p; or Integer.MAX_VALUE if p is (nearly) equal to 1.0.

Throws:

IllegalArgumentException - unless p >= 0.0 and p <= 1.0

poisson

public static int poisson(double lambda)

Returns a random integer from a Poisson distribution with mean λ.

Parameters:

lambda - the mean of the Poisson distribution

Returns:

a random integer from a Poisson distribution with mean lambda

Throws:

IllegalArgumentException - unless lambda > 0.0 and not infinite

pareto

public static double pareto()

Returns a random real number from the standard Pareto distribution.

Returns:

a random real number from the standard Pareto distribution

pareto

public static double pareto(double alpha)

Returns a random real number from a Pareto distribution with shape parameter α.

Parameters:

alpha - shape parameter

Returns:

a random real number from a Pareto distribution with shape parameter alpha

Throws:

IllegalArgumentException - unless alpha > 0.0

cauchy

public static double cauchy()

Returns a random real number from the Cauchy distribution.

Returns:

a random real number from the Cauchy distribution.

discrete

public static int discrete(double[] probabilities)

Returns a random integer from the specified discrete distribution.

Parameters:

probabilities - the probability of occurrence of each integer

Returns:

a random integer from a discrete distribution: i with probability probabilities[i]

Throws:

IllegalArgumentException - if probabilities is null

IllegalArgumentException - if sum of array entries is not (very nearly) equal to 1.0

IllegalArgumentException - unless probabilities[i] >= 0.0 for each index i

discrete

public static int discrete(int[] frequencies)

Returns a random integer from the specified discrete distribution.

Parameters:

frequencies - the frequency of occurrence of each integer

Returns:

a random integer from a discrete distribution: i with probability proportional to frequencies[i]

Throws:

IllegalArgumentException - if frequencies is null

IllegalArgumentException - if all array entries are 0

IllegalArgumentException - if frequencies[i] is negative for any index i

IllegalArgumentException - if sum of frequencies exceeds Integer.MAX_VALUE (231 - 1)

exponential

public static double exponential(double lambda)

Returns a random real number from an exponential distribution with rate λ.

Parameters:

lambda - the rate of the exponential distribution

Returns:

a random real number from an exponential distribution with rate lambda

Throws:

IllegalArgumentException - unless lambda > 0.0

shuffle

public static void shuffle(Object[] a)

Rearranges the elements of the specified array in uniformly random order.

Parameters:

a - the array to shuffle

Throws:

IllegalArgumentException - if a is null

shuffle

public static void shuffle(double[] a)

Rearranges the elements of the specified array in uniformly random order.

Parameters:

a - the array to shuffle

Throws:

IllegalArgumentException - if a is null

shuffle

public static void shuffle(int[] a)

Rearranges the elements of the specified array in uniformly random order.

Parameters:

a - the array to shuffle

Throws:

IllegalArgumentException - if a is null

shuffle

public static void shuffle(char[] a)

Rearranges the elements of the specified array in uniformly random order.

Parameters:

a - the array to shuffle

Throws:

IllegalArgumentException - if a is null

shuffle

public static void shuffle(Object[] a, int lo, int hi)

Rearranges the elements of the specified subarray in uniformly random order.

Parameters:

a - the array to shuffle

lo - the left endpoint (inclusive)

hi - the right endpoint (exclusive)

Throws:

IllegalArgumentException - if a is null

IllegalArgumentException - unless (0 <= lo) && (lo < hi) && (hi <= a.length)

shuffle

public static void shuffle(double[] a, int lo, int hi)

Rearranges the elements of the specified subarray in uniformly random order.

Parameters:

a - the array to shuffle

lo - the left endpoint (inclusive)

hi - the right endpoint (exclusive)

Throws:

IllegalArgumentException - if a is null

IllegalArgumentException - unless (0 <= lo) && (lo < hi) && (hi <= a.length)

shuffle

public static void shuffle(int[] a, int lo, int hi)

Rearranges the elements of the specified subarray in uniformly random order.

Parameters:

a - the array to shuffle

lo - the left endpoint (inclusive)

hi - the right endpoint (exclusive)

Throws:

IllegalArgumentException - if a is null

IllegalArgumentException - unless (0 <= lo) && (lo < hi) && (hi <= a.length)

permutation

public static int[] permutation(int n)

Returns a uniformly random permutation of n elements.

Parameters:

n - number of elements

Returns:

an array of length n that is a uniformly random permutation of 0, 1, ..., n-1

Throws:

IllegalArgumentException - if n is negative

permutation

public static int[] permutation(int n, int k)

Returns a uniformly random permutation of k of n elements.

Parameters:

n - number of elements

k - number of elements to select

Returns:

an array of length k that is a uniformly random permutation of k of the elements from 0, 1, ..., n-1

Throws:

IllegalArgumentException - if n is negative

IllegalArgumentException - unless 0 <= k <= n

main

public static void main(String[] args)

Unit tests the methods in this class.

Parameters:

args - the command-line arguments

All Methods Static Methods Concrete Methods

Javadoc

Javadoc. Automatically generates API and documentation from Javadoc comments.

18

2.2 LIBRARIES AND CLIENTS

‣ random number library

‣ designing libraries

‣ sound synthesis

‣ synthesizer library
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Sound is the perception the vibration of our eardrums.
 
Audio signal. Real-valued (between −1 and +1) function of time.
 
Pure tone. Sound wave defined by the sine function of given 
frequency, amplitude and duration.

Review: digital audio

20

time t
(seconds)

0

+1

−1

amplitude
y(t)

y(t) = sin (2π ⋅ 2048 ⋅ t), 0 ≤ t ≤ T

T = 1/512

Goal. Convert a continuous-time signal into a discrete-time signal.

・A sample is a signal value at specific point in time.

・Take samples at evenly spaced points.

Review: audio sampling

21

model sound with an array of
real numbers between −1 and +1

(using 44,100 samples per second)

a(t) = sin (2π ⋅ 2048 ⋅ t), t = 0
44100 , 1

44100 , 2
44100 , …

y(t) = sin (2π ⋅ 2048 ⋅ t), 0 ≤ t ≤ T

time t
(seconds)

0

+1

−1

amplitude
y(t)

T = 1/512

amplitude
a(t)

Review: standard audio API

StdAudio. Our library for playing, reading, and saving digital audio.

22

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

public class StdAudio

static int SAMPLE_RATE 44,100 (CD quality audio)

static void play(String filename) play the audio file

static void playInBackground(String filename) play the audio file in the background

static void play(double sample) play the sample

static void play(double[] samples) play the samples

static double[] read(String filename) read the samples from an audio file

static void save(String filename, double[] samples) save the samples to an audio file

 ⋮ ⋮

Sine wave implementation

23

public class Synth {

 public static int numberOfSamples(double duration) {
 return (int) (StdAudio.SAMPLE_RATE * duration);
 }

 private static double sine(double freq, double t) {
 return Math.sin(2 * Math.PI * freq * t);
 }

 public static double[] sineWave(double freq, double amplitude, double duration) {
 int n = numberOfSamples(duration);
 double[] a = new double[n];
 for (int i = 0; i < n; i++) {
 double t = 1.0 * i / StdAudio.SAMPLE_RATE;
 a[i] = amplitude * sine(freq, t);
 }
 return a;
 }

}

for internal use only
(private helper methods)

sample at n equally
spaced points

a(t) = A sin (2π ⋅ f ⋅ t), t = 0
44100 , 1

44100 , 2
44100 , …

implementation

double[] a = Synth.sineWave(2048.0, 0.5, 3.0);
StdAudio.play(a);

client

What sound will the following code fragment produce? 
 
 
 
 
 
 
 

A. Extremely high-pitched sound.

B. Inaudible.

C. Ultrasonic weapon.

D. All of the above.

Libraries and clients: quiz 1

24

double freq = 17400.0;
double amplitude = 0.5;
double duration = 10.0;
double[] a = Synth.sineWave(freq, amplitude, duration);
StdAudio.play(a);

to deter youth loitering
(or stealth ringtone)

to most adults (over 25)

according to some opponents

・Concert A is 440 Hz.

・An octave is the interval between a note and one with twice its frequency.

・Octave is divided into 12 notes on a logarithmic scale.

note MIDI
(m)

frequency (Hz) 
(440 × 2 (m−69) / 12)

sine wave

A4 69 440

A♯ / B♭ 70 466.16

B 71 493.88

C 72 523.25

C♯ / D♭ 73 554.37

D 74 587.33

D♯ / E♭ 75 622.25

E 76 659.26

F 77 698.46

F♯ / G♭ 78 739.99

G 79 783.99

G♯ / A♭ 80 830.61
A5 81 880

Crash course in Western music

25

“twelve-tone equal temperament”

69 71 72 74 76 77 79 81

70 73 75 78 80

A4 B C D E F G A5

A♯ C♯ D♯ F♯ G♯

Which of the following converts from MIDI note number to frequency?  

A.  

 

B.  

 

C. Both A and B.  

D. Neither A nor B.

Libraries and clients: quiz 2

26

private static double midiToFrequency(int midi) {
 return 440 * Math.pow(2, (midi - 69) / 12);
}

private static double midiToFrequency(int midi) {
 return 440.0 * 2.0 ^ ((midi - 69.0) / 12.0);
}

integer division

^ is not the power operator

frequency = 440 × 2 (midi − 69) / 12

MIDI-number-to-frequency conversion

Goal. Add methods (and constants) to library that many clients might want to use.
 
Musical Instrument Digital Interface (MIDI). Digital music standard.
 
Class constant.

・Declare and initialize “variable” outside of any method, using final and static modifiers.

・Access modifier can be public or private.

・Java naming convention: use SCREAMING_SNAKE_CASE.

27

public class Synth {
 public static final double CONCERT_A = 440.0;

 private static double midiToFrequency(int midi) {
 return CONCERT_A * Math.pow(2, (midi - 69) / 12.0);
 }

 ...
}

class constant
(static variable)

implementationfrequency = 440 × 2 (midi − 69) / 12

Musical scales

Major scale. Sequence of 8 notes in a specific interval pattern, starting with a root note  
and ending with the same note one octave higher.
 
Ex 1. C major scale.
 
 
 
 
 
 
Ex 2. A major scale.

28

A4 B C♯ D E F♯ G♯ A5

C3 D E F G A B C4

0 2 4 7 9 115 12 interval pattern
(major scale)

0 2 4 7 9 115 12 interval pattern
(major scale)

Musical scales

Major scale. Sequence of 8 notes in a specific interval pattern, starting with a root note  
and ending with the same note one octave higher.

29

public class MajorScale {
 public static void main(String[] args) {
 int root = Integer.parseInt(args[0]);
 double duration = 0.5;
 double amplitude = 0.5;
 int[] pattern = { 0, 2, 4, 5, 7, 9, 11, 12 };
 for (int i = 0; i < pattern.length; i++) {
 int midi = root + pattern[i];
 double freq = Synth.midiToFrequency(midi);
 double[] a = Synth.sineWave(freq, amplitude, duration);
 StdAudio.play(a);
 }
 }
}

~/cos126/libraries> java-introcs MajorScale 60

 [plays A major scale]

~/cos126/libraries> java-introcs MajorScale 69

 [plays C major scale]

interval pattern
(major scale)

client

Play that tune

Goal. Read in a sequence of MIDI note numbers and durations from standard input,
and play the synthesized results to standard audio.

30

~/cos126/libraries> more MajorScaleC.txt
60 0.5
62 0.5
64 0.5
65 0.5
67 0.5
69 0.5
71 0.5
72 0.5

~/cos126/libraries> java-introcs PlayThatTune < MajorScaleC.txt

 [plays C major scale]

MIDI note number

duration (seconds)

Play that tune

Goal. Read in a sequence of MIDI note numbers and durations from standard input,
and play the synthesized results to standard audio.

31

public class PlayThatTune {
 public static void main(String[] args) {
 double amplitude = 0.5;
 while (!StdIn.isEmpty()) {
 int midi = StdIn.readInt();
 double duration = StdIn.readDouble();
 double freq = Synth.midiToFrequency(midi);
 double[] a = Synth.sineWave(freq, amplitude, duration);
 StdAudio.play(a);
 }
 }
}

~/cos126/libraries> java-introcs PlayThatTune < Arpeggio.txt

 [plays arpeggio]

~/cos126/libraries> java-introcs PlayThatTune < LooneyTunes.txt

 [plays Looney Tunes theme]

~/cos126/libraries> java-introcs PlayThatTune < FurElise.txt

 [plays beginning of Fur Elise]

client

2.2 LIBRARIES AND CLIENTS

‣ random number library

‣ designing libraries

‣ sound synthesis

‣ synthesizer library
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Digital synth. Electronic musical instrument that generates audio signals digitally.

・Sound effects.

・Film and television soundtracks.

・Diverse genres of music (rock, jazz, pop, disco, hip–hop, electronic music, ...).

・...

Digital synthesizers

33

Axel F
(Harold Faltemeyer)

R2–D2
(Star Wars)

Synthesizer API

Synth. A library for synthesizing sound.

34

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

public class Synth

static int CONCERT_A 440.0 (concert A pitch in Hz)

static int numberOfSamples(double duration) number of audio samples

static double midiToFrequency(int midi) frequency of MIDI note number

static double sineWave(double freq, double amplitude, double duration) sine wave

static double squareWave(double freq, double amplitude, double duration) square wave

static double sawWave(double freq, double amplitude, double duration) saw wave

static double supersawWave(double freq, double amplitude, double duration) supersaw wave

static double whiteNoise(double amplitude, double duration) white noise

static double[] superpose(double[] a, double[] b) add the two waves

static double[] modulate(double[] a, double[] b) multiply the two waves

static double[] fadeIn(double[] a, double lambda) exponential fade in

static double[] fadeOut(double[] a, double lambda) exponential fade out

 ⋮ ⋮

utility methods

create
sound waves

manipulate
sound waves

Square wave. Alternates between +1 and −1 with frequency f, half the time at each value.

Square waves

35

time t
(seconds)

0

+1

−1

amplitude
y(t)

a(t) = sgn (sin (2π ⋅ 440 ⋅ t)), 0 ≤ t ≤ T

private static double square(double freq, double t) {
 return Math.signum(sine(freq, t));
}

public static double[] squareWave(double freq, double amplitude, double duration) {
 /* similar to sineWave() */
}

T = 1/110

implementation

sgn(x) =
−1 if x < 0

0 if x = 0
+1 if x > 0

Sawtooth wave. Rises from −1 to +1 linearly, then drops back to −1, and repeats with frequency f.

Sawtooth waves

36

time t
(seconds)

0

+1

−1

amplitude
y(t)

T = 1/110

a(t) = 2 (440 t − ⌊440 t + 1
2 ⌋), 0 ≤ t ≤ T

private static double saw(double freq, double t) {
 return 2 * (freq*t - Math.floor(freq*t + 0.5));
}

public static double[] sawWave(double freq, double amplitude, double duration) {
 /* similar to sineWave() */
}

implementation

Sound envelope. Defines how a sound changes over time.
Exponential fade. A sound envelope whose amplitude decays according to exponential function.

Exponential fade

37

time t
(seconds)

0

+1

−1

1

a(t) = sin (2π ⋅ 30 ⋅ t)

sine wave (30 Hz)

time t
(seconds)

0

+1

−1 a(t) = sin (2π ⋅ 30 ⋅ t) 2−10 t

exponential
decay function

sine wave (30 Hz) with exponential fade (λ = 10)

1

Exponential fade

38

public class Synth {

 public static double[] fadeOut(double[] a, double lambda) {
 int n = a.length;
 double[] result = new double[n];
 for (int i = 0; i < n; i++) {
 double t = 1.0 * i / StdAudio.SAMPLE_RATE;
 result[i] = a[i] * Math.pow(2.0, -lambda * t);
 }
 return result;
 }

}

implementation

double[] a = Synth.sineWave(440.0, 0.5, 1.0);
double[] b = Synth.fadeOut(a, 10.0);
StdAudio.play(b);

client

double[] a = Synth.squareWave(55.0, 0.25, 1.0);
double[] b = Synth.fadeOut(a, 5.0);
StdAudio.play(b);

client

Libraries and clients: quiz 3

What sound does StdAudio.play(mystery(5.0)) produce?  

A. 5 seconds of concert A (440 Hz).

B. 5 seconds of a random frequency.

C. 5 seconds of silence.

D. 5 seconds of static.

39

public static double[] mystery(double duration) {
 int n = numberOfSamples(duration);
 double[] a = new double[n];
 for (int i = 0; i < n; i++) {
 a[i] = StdRandom.uniformDouble(-0.5, 0.5);
 }
 return a;
}

White noise

White noise. Samples are uniformly random values.

40

time t
(seconds)

0

+0.5

−0.5

amplitude
a(t)

public static double[] whiteNoise(double amplitude, double duration) {
 int n = numberOfSamples(duration);
 double[] a = new double[n];
 for (int i = 0; i < n; i++) {
 a[i] = StdRandom.uniformDouble(-amplitude, +amplitude);
 }
 return a;
}

implementation

while (true) {
 double[] a = Synth.whiteNoise(0.5, 1.0);
 double[] b = Synth.fadeOut(a, 20.0);
 StdAudio.play(b);
}

client

Superposition. To combine two (or more) audio signals, add the corresponding samples.
 
Ex 1. Harmonics.

Superposition

41

double duration = 5.0;
double[] a4 = Synth.sineWave(440.0, 0.50, duration);
double[] a3 = Synth.sineWave(220.0, 0.25, duration);
double[] a5 = Synth.sineWave(880.0, 0.25, duration);
double[] harmonics = Synth.superpose(a4, a3, a5);
StdAudio.play(harmonics);

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A4
A3

A5

Superposing waves to make composite sounds

Superposition

Superposition. To combine two (or more) audio signals, add the corresponding samples.

Ex 1. Harmonics.
Ex 2. Chord.

42

double duration = 5.0;
double[] a = Synth.sineWave(440.00, 0.33, duration);
double[] c = Synth.sineWave(554.37, 0.33, duration);
double[] e = Synth.sineWave(659.26, 0.33, duration);
double[] chord = Synth.superpose(a, c, e);
StdAudio.play(chord);

440.00
554.37
659.26

440.00
220.00
880.00

A major chord

concert A with harmonics

 A
 C♯
 E

A
A
A

Superposing waves to make composite sounds

Superposition

Superposition. To combine two (or more) audio signals, add the corresponding samples.

Ex 1. Harmonics.
Ex 2. Chord.
Ex 3. Supersaw.

43

double freq = 220.0;
double amplitude = 0.05;
double duration = 10.0;
double[] a0 = Synth.sawWave(freq, amplitude, duration);
double[] a1 = Synth.sawWave(freq - 0.191, amplitude, duration);
double[] a2 = Synth.sawWave(freq - 0.109, amplitude, duration);
double[] a3 = Synth.sawWave(freq - 0.037, amplitude, duration);
double[] a4 = Synth.sawWave(freq + 0.031, amplitude, duration);
double[] a5 = Synth.sawWave(freq + 0.107, amplitude, duration);
double[] a6 = Synth.sawWave(freq + 0.181, amplitude, duration);
double[] supersaw = Synth.superpose(a0, a1, a2, a3, a4, a5, a6);
StdAudio.play(supersaw);

“detuned” frequencies

Slay that tune

Goal. Play that tune, but with a supersaw.

44

public class SlayThatTune {
 public static void main(String[] args) {
 double amplitude = 0.5;
 while (!StdIn.isEmpty()) {
 int midi = StdIn.readInt();
 double duration = StdIn.readDouble();
 double freq = Synth.midiToFrequency(midi - 12);
 double[] a = Synth.supersawWave(freq, amplitude, duration);
 StdAudio.play(a);
 }
 }
}

~/cos126/libraries> java-introcs SlayThatTune < Arpeggio.txt

 [plays arpeggio]

~/cos126/libraries> java-introcs SlayThatTune < AxelF.txt

 [plays beginning of Axel F]

client

transpose one
octave lower

public class Synth {
 public static final double CONCERT_A = 440.0;

 public static int numberOfSamples(double duration) { ... }
 public static double midiToFrequency(int midi) { ... }

 private static double sine(double freq, double t) { ... }
 private static double square(double freq, double t) { ... }
 private static double saw(double freq, double t) { ... }

 public static double[] sineWave(double freq, double amplitude, double duration) { ... }
 public static double[] squareWave(double freq, double amplitude, double duration) { ... }
 public static double[] sawWave(double freq, double amplitude, double duration) { ... }
 public static double[] supersawWave(double freq, double amplitude, double duration) { ... }
 public static double[] whiteNoise(double amplitude, double duration) { ... }

 public static double[] superpose(double[] a, double[] b) { ... }
 public static double[] modulate(double[] a, double[] b) { ... }
 public static double[] fadeIn(double[] a, double lambda) { ... }
 public static double[] fadeOut(double[] a, double lambda) { ... }

 public static void main(String[] args) { ... }

}

Synth library

45

utility methods

create
sound waves

manipulate
sound waves

private helper methods

implementation

Summary

API. Defines method headers and behavior for a library.  
Client. Program that calls a library’s methods.  
Implementation. Program that implements the library’s functionality.
 
Encapsulation. Separating clients from implementation details by hiding information.
 
Benefits.

・Reusable libraries.

・Independent development of small programs.

・Collaboration with a team of programmers.
 
 
Sound synthesis. You can write programs to synthesize sound.

46

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Zhongshuge bookstore Feng Shao / X+Living

Random Number xkcd CC BY-NC 2.5

Coin Toss Adobe Stock education license

Ten-Sided Die Adobe Stock education license

Normal Distribution Adobe Stock education license

Shuffle Icon Adobe Stock education license

Client Avatars Adobe Stock education license

Cloud Coding Icon Adobe Stock education license

Contract Icon Adobe Stock education license

Implementation Icon Adobe Stock education license

Family 1 Watching TV Adobe Stock education license

Family 2 Watching TV Adobe Stock education license

Family 3 Watching TV Adobe Stock education license

https://www.archdaily.com/948542/dujiangyan-zhongshuge-bookstore-x-plus-living
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/
https://stock.adobe.com/images/coin-toss-icon/512552738
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/set-of-10-sided-die-pentagonal-trapezohedron-dice-various-colors-3d-rendering/451168048
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-standard-normal-distribution-graph-gaussian-bell-graph-curve-bell-shaped-function-vector-illustration-isolated-on-white-background/536545918
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/shuffle-icon-from-collection/229490756
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/speech-bubble-concept-feedback-female-avatar-collection-customer-feedback-on-info-graphic-app-and-website-creative-testimonial-template-with-different-shapes-vector-illustration/407464386
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cloud-coding-icon/517168128
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-contract-icon-agreement-and-signature-pact-accord-convention-symbol-flat/89219791
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/implementation-icon-vector-trendy-flat-implementation-icon-from-general-collection-isolated-on-white-background-vector-illustration-can-be-used-for-web-and-mobile-graphic-design-logo-eps10/304217781
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/family-childhood-fatherhood-technology-and-people-concept-happy-father-and-little-son-with-popcorn-watching-tv-at-home-in-evening/246788704
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/family-watching-tv/431353800
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/happy-young-family-watching-television-sitting-on-sofa/476624328
https://stock.adobe.com/enterprise-conditions#educationLicenses

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

TV Remote Control Adobe Stock education license

Pink Vintage TV Adobe Stock education license

Bravia TV Sony

Pharmacy Pills Adobe Stock education license

Private Sign on a Door Adobe Stock education license

Sound Waves and the Ear Wikimedia CC BY 4.0

Piano Keys Adobe Stock education license

Mosquito Alarm Wikipedia public domain

Yamaha DX7 Wikimedia public domain

R2–D2 Sound Effects Star Wars

Axel F Harold Faltemeyer

Piano Keys Adobe Stock education license

Human Hands with Puzzle Adobe Stock education license

https://stock.adobe.com/images/tv-remote-control-isolated-with-clipping-path/568522242
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/pink-vintage-tv-on-white-background/79067500
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://electronics.sony.com/tv-video/televisions/all-tvs/p/xr42a90k
https://stock.adobe.com/images/pharmacy-pills-capsule-medicine-healthcare-3d-illustration/276035828
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/private-sign-on-a-door/119685570
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://commons.wikimedia.org/wiki/File:1405_Sound_Waves_and_the_Ear.jpg
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/piano-keys/102050809
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/File:17.4_kHz_sine_wave.flac
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:YAMAHA_DX7.jpg
https://wiki.creativecommons.org/wiki/public_domain
https://en.wikipedia.org/wiki/R2-D2
https://en.wikipedia.org/wiki/Axel_F
https://stock.adobe.com/images/piano-keys/102050809
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/human-hands-holds-a-pieces-of-puzzle-business-solution-concept-teamwork-problem-solving-hand-drawn-colored-vector-illustration-isolated-on-light-background-modern-trendy-flat-cartoon-style/600652890
https://stock.adobe.com/enterprise-conditions#educationLicenses

