C O1nN p uter S C 1 cCnce ROBERT SEDGEWICK | KEVIN WAYNE

2.2 LIBRARIES AND CLIENTS

> random number library

> designing libraries

COMPUTER
Sc IENCE]
- > synthesizer library

» sound synthesis

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

any program you might want to write

objects

functions

graphics, sound, and image 1/0

arrays

conditionals

text 1/0

primitive data types assignment statements

build reusable libraries

2.2 LIBRARIES AND CLIENTS

> random number library

int 9etRondomNumber()

return Y, // chosen bg fair dice roll.
// 9Uoranteed to be random.

https://introcs.cs.princeton.edu
https://xkcd.com/221/
https://xkcd.com/221/

Standard random library

Goal. Design a library to generate pseudo-random numbers.

public class StdRandom

static double uniformDouble() real number between 0 and 1

static double uniformDouble(double 1o, double hi) real number between 10 and hi

static boolean bernoulli(double p) true with probability p, false otherwise
static 1nt uniformInt(int n) integer between 0 and n-1

static double gaussian() normal with mean 0 and stddev 1

static double gaussian(double mu, double sigma) normal with mean mu and stddev sigma
static void shuffle(String[] a) shuffle the string array a[]

static 1int discrete(int[] freq) 1 with probability proportion to freq[i]

Standard random implementation: random numbers from various distributions

public class StdRandom {

public static double uniformDouble() {

return Math.random(): -« calls a method

(in a different class)

public static double uniformDouble(double 1o, double hi) {
return 1o + (uniformDouble() * Chi - lo));

}

public static boolean bernoulli(double p) { q you could re-implement
return uniformDouble() < p; Z < these methods in each program,

} but now you don’t have to!

L g

public static int uniformInt(int n) {
return (int) (uniformDouble() * n);

calls a method
(in the same class)

Standard random implementation: random numbers from a Gaussian distribution

public class StdRandom {

public static double gaussian() {

can call a method without
knowing how it is implemented

public static double gaussian(double mu, double sigma) {

}

Standard random implementation: shuffling the elements in an array

public class StdRandom {

private static void exch(String[] a, int i, int j) { < private helper method
String temp = al[i]: (cannot be called from outside this class)
al1] = aljl;
aljl = temp;

}

public static void shuffle(String[] a) {
for (int 1 = 0; 1 < a.length; 1++) {

int r = uniformInt(i+1);
exch(a, 1, r);
} A
}
} calls a private method

(in the same class)

Calling a library function

Calling from a client. Specify library name, dot operator, function name, and arguments.

library name method name arguments

| -

> [StdRandom||uniformDouble|(0.0, 1.0)

|

dot operator

method call
(from client)

Note. Must use fully qualified name if calling a function from another file.

Standard random clients

StdRandom client 1 StdRandom client 2
public class Shuffle public class RandomPoints
public static void main(String[] args public static void main(String[] args
StdRandom. shuffle(args int n = Integer.parselnt(args|0
for (int 1 0; 1 args.length; 1 for (int 1 0; 1 n; 1

StdOut.print(args| double x = StdRandom.gaussian(0.5, 0.1
double y = StdRandom.gaussian(0.5, 0.1

StdOut.println StdDraw.point(x, vy

~/cosl26/11braries> java-introcs Shuffle A B CD E ~/cosl126/1ibraries> java-introcs RandomPoints 100000
EADBC

~/cosl26/11braries> java-introcs Shuffle A B C D E
CAEBD

~/cosl26/11braries> java-introcs Shuffle 2C 2D 2H
4S 2D AC 9H QH 8C ... JS 4H 2S

2.2 LIBRARIES AND CLIENTS

> designing libraries

https://introcs.cs.princeton.edu

Libraries

Def. A module is a set of functions stored in a single file. . |
< definitions for this course
Def. A library is a module whose primary purpose is for use by other programs.
library description example method call source logo
StdRandom generate random numbers StdRandom.uniformInt(6)
textbook
StdDraw draw geometric Shapes StdDraw.circle(0.5, 0.5, 0.25)
Math compute mathematical functions Math.sqrt(2.0)
Java system <25
java. util.Ar rays manipulate arrays Arrays.sort(a) —

Gaussian

SayNumber

compute Gaussian pdf and cdf

speak numbers

Gaussian.pdf(3.0)

user-defined
SayNumber.sayInteger(126)

11

API, client, and implementation

Application programming interface (API). Specifies method headers and behavior for a library.
Implementation. Program that implements the methods in an API. \

Client. Program that uses a library through its API. contract between
client and implementation

client API implementation

public class StdRandom {

public class StdRandom

StdRandom.uniformInt(6) :

static int uniformInt(int n) public static int uniformInt(int n) {

é static void shuffle(String[] a) ;

public static void shuffle(String[] a) {
—

StdRandom.shuffle(args);

API, client, and implementation

Application programming interface (API). Specifies method headers and behavior for a library.
Implementation. Program that implements the methods in an API.

Client. Program that uses a library through its API.

client API implementation

13

Encapsulation

Encapsulation. Separating clients from implementation details by hiding information.

Principle. A client does not need to know how a method is implemented in order to use it.

Benefits.

« Can develop client code and implementation code independently.

» Can change implementation details without breaking clients.

Private access modifier. Designates a method as not for use by a client.

* APl does not list private methods.
 Compile-time error for client to call a private method.

 Advantage: implementation can add/remove private methods without impacting clients.

14

Accessing a library

Java classpath. Places where Java looks for user-defined libraries (and other resources).

« Simplest: put library .class file in same directory as client program.

» Best practice: bundle library .class files in a .jar file; add .jar file to Java classpath. -« std1ib.jar contains:
StdRandom.class
StdIn.class
StdOut.class
StdDraw.class
StdPicture.class
StdAudio.class

~/cosl26/11braries> javac Shuffle.java
Shuffle.java:3: error: cannot find symbol adds std1ib.jar
StdRandom.shuffle(args); to Java classpath

~/cosl26/1ibraries> Shuffle~fava

~/cosl126/11braries> Shufﬂe ABCDE

CAEBD

Unit testing

Best practice. Include a main() method in each class as a test client.

» Call each public method at least once. » .
minimum requlrements

e Use result to check behavior. (in this course)

public class StdRandom {

public static void main(String[] args) {

int n = Integer.parselnt(args[0]);

for (int 1 =0; 1 < n; 1++) {
StdOut.printf("%8.5f ", uniformDouble(10.0, 99.0));
StdOut.printf("%5b " , bernoulli1(0.5));
StdOut.printf("%2d " , uniformInt(100));
StdOut.printf("%7.5f ", gaussian(9.0, 0.2));
StdOut.printin();

unit tests for shuffle()
and other methods

.

~/cosl1l26/11braries>

85.06009 false
22.97440 true
19.46492 false
53.62835 true
85.72239 false

8 8.
40 9.
28 8.
90 8.

5 8.

|

java-introcs StdRandom 5

88418
18536
89026
90420
78333

looks plausible
(between 0 and 99)

|

executes main()
defined in this class

Method header comments

Best practice. Every method should include a comment before the method header.

* Describe it purpose. minimum requirements

(in this course)

* Use names of parameter variables in description.

public static int uniformInt(int n) {
return (1nt) (Math.random() * n);

17

Javadoc

Javadoc. Automatically generates APl and documentation from Javadoc comments.

Class StdRandom

Object
StdRandom

public final class StdRandom
extends Object

Overview. The StdRandom class provides static methods for generating random number from various discrete and continuous distributions, including
uniform, Bernoulli, geometric, Gaussian, exponential, Pareto, Poisson, and Cauchy. It also provides method for shuffling an array or subarray and
generating random permutations.

Conventions. By convention, all intervals are half open. For example, uniformDouble(-1.0, 1.0) returns a random number between —1.0
(inclusive) and 1.0 (exclusive). Similarly, shuffle(a, 1o, hi) shufflesthe hi — 1o elementsin the array a[], starting at index 1o (inclusive) and
ending at index h1 (exclusive).

Performance. The methods all take constant expected time, except those that involve arrays. The shuffle method takes time linear in the subarray to be
shuffled; the discrete methods take time linear in the length of the argument array.

Additional information. For additional documentation, see Section 2.2 of Computer Science: An Interdisciplinary Approach by Robert Sedgewick
and Kevin Wayne.

Author:
Robert Sedgewick, Kevin Wayne

18

2.2 LIBRARIES AND CLIENTS

» sound synthesis

https://introcs.cs.princeton.edu

Review: digital audio

)

Sound is the perception the vibration of our eardrums.

Audio signal. Real-valued (between —1 and +1) function of time.

Pure tone. Sound wave defined by the sine function of given

frequency, amplitude and duration.

y(it)=sin(2r-2048-1), 0Lt < T

20

Review: audio sampling

Goal. Convert a continuous-time signal into a discrete-time signal.

« A sample is a signal value at specific point in time.

 Take samples at evenly spaced points.

y() =sin(2z-2048-¢), 0 <t < T

a(t) =sin 2z - 2048 - 1), ¢

0 1 2

44100 > 44100 °> 44100 > *°°

model sound with an array of
real numbers between —1 and +1
(using 44,100 samples per second)

21

Review: standard audio API

StdAudio. Our library for playing, reading, and saving digital audio.

public class StdAudio

static int SAMPLE_RATE 44,100 (CD quality audio)

static void play(String filename) play the audio file

static void playInBackground(String filename) play the audio file in the background
static void play(double sample) play the sample

static void play(double[] samples) play the samples

static double[] read(String filename) read the samples from an audio file
static void save(String filename, double[] samples) save the samples to an audio file

22

Sine wave implementation)

public class Synth { implementation

public static int numberOfSamples(double duration) {
return (int) (StdAudio.SAMPLE _RATE * duration);

h
private static double sine(double freq, double t) { < j?r”ﬂewudbweonb7
_ (private helper methods)
return Math.sin(2 * Math.PI * freq * t);
h

public static double[] sineWave(double freq, double amplitude, double duration) {
int n = numberOfSamples(duration) ;
double[] a = new double[n];
for (int 1 = 0; 1 < n; 1++) { o af y
double t = 1.0 * i / StdAudio.SAMPLE_RATE; | < smpre o 1 equay
: . _ spaced points
ali] = amplitude * sine(freq, t); client

¥

return a; double[] a = Synth.sineWave(2048.0, 0.5, 3.0);
¥ StdAudio.play(a);

0 1 2
44100 ° 44100 > 44100 ° " °°

} a(t) =Asin (2z-f-1), t =

23

Libraries and clients: quiz 1

What sound will the following code fragment produce?

ouble freq = 17400.0;
ouble amplitude = 0.5;
ouble duration = 10.0;

d
d
d
double[] a = Synth.sineWave(freq, amplitude, duration) ;
StdAudio.play(a);

A. Extremely high-pitched sound.
B. Inaudible.
C. Ultrasonic weapon.

D. All of the above.

)

24

Crash course in Western music

)

* Concert A is 440 Hz.
 An octave is the interval between a note and one with twice its frequency.

* Octave is divided into 12 notes on a logarithmic scale.

note MIDI frequency (Hz) sine wave
m—69) /12
A# C# D# F# Gt (m) (440 x 2 ("m0 /12

“M9 T |72 (74| 76
A

A N AVAVaVaVaVaVvavava
A#/Bb 70 466.16 /\/\/\/VWW\/

-t BV AVAVAVAVAVAVAVAVAVA
T 7 AVAVAVAVAVAVAVAVAVAVAY

, B C D E F G A, D# /Eb 75 622 25 W\/\/\W/\/\/\f
. E 76 659.26 AVAVAVAVAVAVAVAVAVAVAVAVAV/
: e @
e e Foo7 Y A AVAVAVAVAVAYAVAVAYAYAVAVAY

F#/Gb 78 739.99 AV AVAVAVAVAVAVAVAVAVAVAVAVAVA

G 79 783.99 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA!
G#/Ab 80 830.61 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYA
As 81 380 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

Libraries and clients: quiz 2

Which of the following converts from MIDI note number to frequency?

private static double midiToFrequency(int midi) {
return 440 * Math.pow(2, (midi - 69) / 12);

frequency = 440 x 2 (midi - 69) /12

private static double midiToFrequency(int midi) {
return 440.0 * 2.0 A ((midi - 69.0) / 12.0);

C. Both A and B.

D. Neither A nor B.

26

MIDI-numberto-frequency conversion

)

Goal. Add methods (and constants) to library that many clients might want to use.

Musical Instrument Digital Interface (MIDI). Digital music standard.

Class constant.
* Declare and initialize “variable” outside of any method, using final and static modifiers.
* Access modifier can be public or private.

* Java naming convention: use SCREAMING_SNAKE_CASE.

public class Synth {

/ fant
oublic static final double CONCERT A = 440.0; < crass consian
(static variable)

private static double midiToFrequency(int midi) {
return CONCERT_A * Math.pow(2, (midi - 69) / 12.0);
}

: . Frequency = 440 x 2 (midi —69) /12

implementation

27

Musical scales

Major scale. Sequence of 8 notes in a specific interval pattern, starting with a root note
and ending with the same note one octave higher.

Ex 1. C major scale.

0 2 4 5 7 0 11 12 < interval pattern
(major scale)
[J
¢ e
& [J
60 62 64 65 67 69 71 72
C, D E F G A B C,
Ex 2. A major scale.
0 o 4 5 7 9 11 17 < interval pattern

(major scale)

£33
S
N
i
£33
%

==

69 71 73 74 76 78 30 81

28

Musical scales

)

Major scale. Sequence of 8 notes in a specific interval pattern, starting with a root note

and ending with the same note one octave higher.

public class MajorScale client ,
public static void main(String[] args e
int root = Integer.parselnt(args|O interval pattern
double duration = 0.5 k///// (major scale)

double amplitude 0.5
int pattern o, 2, 4,5, 7, 9, 11, 12

for (int 1 0; 1 pattern. length; 1
int midi root pattern|
double freq Synth.midiToFrequency (mids
double[] a = Synth.sineWave(freq, amplitude, duration
StdAudio.play(a

~/cosl126/1ibraries> java-introcs MajorScale 60

) [plays A major scale]

~/cosl26/11braries> java-introcs MajorScale 69

) [plays C major scale]

29

Play that tune

)

Goal. Read in a sequence of MIDI note numbers and durations from standard input,

and play the synthesized results to standard audio.

~/cosl126/11braries> more MajorScaleC. txt
60 0.5

62 0.5 «—— duration (seconds)

64
65
67
69
71
72

MIDI note number

~/cosl26/11braries> java-introcs PlayThatTune < MajorScaleC. txt

) [plays C major scale]

30

Play that tune

)

Goal. Read in a sequence of MIDI note numbers and durations from standard input,

and play the synthesized results to standard audio.

client

public class PlayThatTune =
public static void main(String[] args | 4
double amplitude = 0.5
while (!StdIn.isEmpty
int midi StdIn.readInt
double duration StdIn.readDouble
double freg Synth.midiToFrequency(mids
double a = Synth.sineWave(freq, amplitude, duration

StdAudio.play(a

~/cosl126/1ibraries> java-introcs PlayThatTune < Arpeggio.txt

) [plays arpeggio]

~/cosl26/11braries> java-introcs PlayThatTune < LooneyTunes.txt

) [plays Looney Tunes theme]

~/cosl26/1ibraries> java-introcs PlayThatTune < FurElise.txt

) [plays beginning of Fur Elise]

31

2.2 LIBRARIES AND CLIENTS

> synthesizer library

https://introcs.cs.princeton.edu

Digital synthesizers

)

Digital synth. Electronic musical instrument that generates audio signals digitally.

 Sound effects.

Film and television soundtracks.

Diverse genres of music (rock, jazz, pop, disco, hip-hop, electronic music, ...).

~d ~d

N N
R2-D2 Axel F
(Star Wars) (Harold Faltemeyer)

33

Synthesizer API

Synth. A library for synthesizing sound.

public class Synth

static int CONCERT_A 440.0 (concert A pitch in Hz)
static int numberOfSamples(double duration) number of audio samples
static double midiToFrequency(int midi) frequency of MIDI note numbe(r
static double sineWave(double freq, double amplitude, double duration) sine wave

static double squareWave(double freq, double amplitude, double duration) square wave .
static double sawWave(double freq, double amplitude, double duration) saw wave

static double supersawWave(double freq, double amplitude, double duration) supersaw wave

static double whiteNoise(double amplitude, double duration) hite noise

static double[] superpose(double[] a, double[] b) add the two waves)
static double[] modulate(double[] a, double[] b) multiply the two waves
static doublel[] fadeIn(double[] a, double Tambda) exponential fade in

static double[] fadeOut(double[] a, double Tambda) exponential fade out

utility methods

create
sound waves

manipulate
sound waves

34

Square waves

)

Square wave. Alternates between +1 and -1 with frequency f, half the time at each value.

—1 1if x<O
a(t) = sgn (sin (27 - 440 - t)), 0<rr<T sgn(x) = 0 if x=0
+1 1f x>0

private static double square(double freq, double t) { implementation
return Math.signum(sine(freq, t));

public static double[] squareWave(double freq, double amplitude, double duration) {

35

Sawtooth waves

)

Sawtooth wave. Rises from -1 to +1 linearly, then drops back to —1, and repeats with frequency f.

/

/

a(t) = 2(440t — {440t + %J), 0L¢t<T

private static double saw(double freq, double t) { implementation
return 2 * (freg*t - Math.floor(freq*t + 0.5));

public static double[] sawWave(double freq, double amplitude, double duration) {

36

Exponential fade

Sound envelope. Defines how a sound changes over time.

Exponential fade. A sound envelope whose amplitude decays according to exponential function.

sine wave (30 Hz)

a(t) = sin 2z - 30 - ¢)

sine wave (30 Hz) with exponential fade (A = 10)

a(t) = sin 2z - 30 - 1) 27107

|

exponential
decay function

37

Exponential fade

D

public class Synth { implementation

public static double[] fadeOut(double[] a, double Tambda) {

int n = a.length;
double[] result = new double[n];
for (int 1 =0; 1 < n; 1++) {
double t = 1.0 * 1 / StdAudio.SAMPLE_RATE;
result[1] = al[1] * Math.pow(2.0, -lambda * t);
}

return result;

P

client

client

double[] a = Synth.sineWave(440.0, 0.5, 1.0);
double[] b = Synth.fadeOut(a, 10.0);
StdAudio.play(b);

double[] a = Synth.squareWave(55.0, 0.25, 1.0);
double[] b = Synth.fadeOut(a, 5.0);
StdAudio.play(b);

38

Libraries and clients: quiz 3

What sound does StdAudio.play(mystery(5.0)) produce?

A. 5 seconds of concert A (440 Hz). public static double[] mystery(double duration) {
1int n = numberOfSamples(duration);

B. 5 seconds of a random frequency. double[] a = new doubleln]:
for (int 1 =0; 1 < n; 1++) {

C. > seconds of silence. al[1] = StdRandom.uniformDouble(-0.5, 0.5);
}

D. 5 seconds of static. _
return a,

39

White noise

)

White noise. Samples are uniformly random values.

° o oy °e o 00) s o
o L ..’ ° O o M o, o * :‘ * o ®
~ . (4 % oo.‘ . % o ’ g L4 . %°°®) L)
. 0‘ S . }' a $ o o * . ® “: 'Y ° o, % o e ¢ oC
..... o .o. ° . - 5 » . . o °* o [) ..o .. X O‘ ﬁ °
° ¢ | * | o . ¢ ®e * ..
- %5 P .J * .. 2 . .'. .l > L 4 .. 2. 0? ®
>G5 ~o e . . ., .“ ..0 f] ".. L ? . o
o, ° * R o .o, . [¢ o °
-~ o ., &2 (8 . o 0 oo oo *° Cs > @
) “ ° o o.' S * * r'd * e® o ° :.‘ y
° ° ° N O ° O P4 e ¢ [
4 o® Dl I s S e
e LY 0 3 ° . % ee® ..Q :.
o) “ *e S o« o

public static double[] whiteNoise(double amplitude, double duration) {

int n = numberOfSamples(duration);
double[] a = new double[n];
for (int 1 =0; 1 < n; 1++) {
al1] = StdRandom.uniformDouble(-amplitude, +amplitude);
¥

return a,;

client

while (true) {
double[] a = Synth.whiteNoise(0.5, 1.0);
double[] b = Synth.fadeOut(a, 20.0);
StdAudio.play(b);

40

Superposition

)

Superposition. To combine two (or more) audio signals, add the corresponding samples.

Ex 1. Harmonics.

aou
aou
daou
daou
C

D
D
N
D

oub’

lel
o

a4 =
a3 =
as =

Synt
Synt
Synt

le duration = 5.0;
le[_
el

n.sineWave(440.0, 0.50,
n.sineWave(220.0, 0.25, d

n.sineWave(880.0, 0.25, o

uration) ;
uration) ;
uration) ;

| harmonics = Synth.superpose(ad4, a3, a5);
StdAudio.playCharmonics) ;

concert A with harmonics

B VAN VAN A VAN A VA SNy/AnN

41

Superposition

)

Superposition. To combine two (or more) audio signals, add the corresponding samples.

Ex 1. Harmonics.
Ex 2. Chord.

aou
aou
daou
daou
C

D
D
N
D

oub’

lel
ol

d =
C =
e =

Synt
Synt
Synt

le duration = 5.0;
le[_
el

n.sineWave (440.00,
n.sineWave(554.37,

n.sineWave (659. 26,

| chord = Synth.superpose(a,
StdAudio.play(chord) ;

0.33, duration):
0.33, duration):
0.33, duration):
C, e);

A T TN T TN TN TN
Ct NN NN U
E A~~~ A~ A~ A~ AN NNN

A major chord

/\w/\v~\/“\—\/“\/F\J/\xﬂ\/“\~v/\\/“\/

42

Superposition

Superposition. To combine two (or more) audio signals, add the corresponding samples.

Ex 1. Harmonics.
Ex 2. Chord.

Ex 3. Supersaw.

double freq = 220.0;

double amplitude = 0.05; “detuned” frequencies

double duration = 10.0; l

double[] a0 = Synth.sawWave(freq, amplitude, duration):
double[] al = Synth.sawWave(freq - 0.191, amplitude, duration);
double[] a2 = Synth.sawWave(freq - 0.109, amplitude, duration);
double[] a3 = Synth.sawWave(freq - 0.037, amplitude, duration);
double[] a4 = Synth.sawWave(freq + 0.031, amplitude, duration);
double[] a5 = Synth.sawWave(freq + 0.107, amplitude, duration):;
double[] a6 = Synth.sawWave(freq + 0.181, amplitude, duration):
double[]| supersaw = Synth.superpose(a0, al, a2, a3, a4, a5, a6);

StdAudio.play(supersaw) ;

)

Slay that tune

)

Goal. Play that tune, but with a supersaw.

client

public class SlayThatTune ﬁ
L

transpose one
octave lower

|

double freq Synth.midiToFrequency(midi 12
double a = Synth.supersawWave(freq, amplitude, duration

~/cosl126/1ibraries> java-introcs SlayThatTune < Arpeggio.txt

) [plays arpeggio]

~/cosl26/11braries> java-introcs SlayThatTune < AxelF.txt

) [plays beginning of Axel F]

44

Synth library

public class Synth {

public static final double CONCERT_A = 440.0: implementation
pub11c statTc int ngm?erOfSamp1es(éoub1? QUrat1on) { ...}) BT

public static double midiToFrequency(int midi) { ... }

private static double sine(double freq, double t) { ... }

private static double square(double freq, double t) { ... } < private helper methods

private static double saw(double freq, double t) { ... }

public static doublel[] sineWave(double freq, double amplitude, double duration) { ... }

public static doublel[] squareWave (double freq, double amplitude, double duration) { ... }

public static doublel[] sawWave (double freq, double amplitude, double duration) { ... } <« create
public static double[] supersawWave(double freq, double amplitude, double duration) { ... } ORI
public static doublel] whiteNoise(double amplitude, double duration) { ... }

public static double[] superpose(double[] a, double[] b) { }

public static double[] modulate(double[] a, double[] b) { ... } manipulate

public static doublel. fadeIn(double[] a, double Tambda) { ...}) sound waves

public static doublel] fadeOut(double[] a, double Tambda) { }

public static void main(String[] args) { ... }

Summary

APl. Defines method headers and behavior for a library.

Client. Program that calls a library’s methods.

Implementation. Program that implements the library’s functionality.

Encapsulation. Separating clients from implementation details by hiding information.

Benefits.
« Reusable libraries.

* Independent development of small programs.

» Collaboration with a team of programmers.

Sound synthesis. You can write programs to synthesize sound.

46

Credits

media source license
Zhongshuge bookstore Feng Shao / X+Living
Random Number xked CCBY-NC2.5
Coin Toss Adobe Stock education license
1en-Sided Die Adobe Stock education license
Normal Distribution Adobe Stock education license
Shuffle Icon Adobe Stock education license
Client Avatars Adobe Stock education license
Cloud Coding Icon Adobe Stock education license
Contract Icon Adobe Stock education license
Implementation Icon Adobe Stock education license
Family 1 Watching TV Adobe Stock education license
Family 2 Watching TV Adobe Stock education license
Family 3 Watching TV Adobe Stock education license

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

https://www.archdaily.com/948542/dujiangyan-zhongshuge-bookstore-x-plus-living
https://xkcd.com/221/
https://creativecommons.org/licenses/by-nc/2.5/
https://stock.adobe.com/images/coin-toss-icon/512552738
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/set-of-10-sided-die-pentagonal-trapezohedron-dice-various-colors-3d-rendering/451168048
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-standard-normal-distribution-graph-gaussian-bell-graph-curve-bell-shaped-function-vector-illustration-isolated-on-white-background/536545918
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/shuffle-icon-from-collection/229490756
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/speech-bubble-concept-feedback-female-avatar-collection-customer-feedback-on-info-graphic-app-and-website-creative-testimonial-template-with-different-shapes-vector-illustration/407464386
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cloud-coding-icon/517168128
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/the-contract-icon-agreement-and-signature-pact-accord-convention-symbol-flat/89219791
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/implementation-icon-vector-trendy-flat-implementation-icon-from-general-collection-isolated-on-white-background-vector-illustration-can-be-used-for-web-and-mobile-graphic-design-logo-eps10/304217781
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/family-childhood-fatherhood-technology-and-people-concept-happy-father-and-little-son-with-popcorn-watching-tv-at-home-in-evening/246788704
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/family-watching-tv/431353800
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/happy-young-family-watching-television-sitting-on-sofa/476624328
https://stock.adobe.com/enterprise-conditions#educationLicenses

Credits

media source license
TV Remote Control Adobe Stock education license
Pink Vintage TV Adobe Stock education license
Bravia TV Sony
Pharmacy Pills Adobe Stock education license
Private Sign on a Door Adobe Stock education license
Sound Waves and the Ear Wikimedia CCBY40
Piano Keys Adobe Stock education license
Mosquito Alarm Wikipedia public domain
Yamaha DX7 Wikimedia public domain
R2-D2 Sound Effects Star Wars

Axel F

Piano Keys

Human Hands with Puzzle

Harold Faltemeyer

Adobe Stock

Adobe Stock

education license

education license

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/tv-remote-control-isolated-with-clipping-path/568522242
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/pink-vintage-tv-on-white-background/79067500
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://electronics.sony.com/tv-video/televisions/all-tvs/p/xr42a90k
https://stock.adobe.com/images/pharmacy-pills-capsule-medicine-healthcare-3d-illustration/276035828
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/private-sign-on-a-door/119685570
https://stock.adobe.com/enterprise-conditions#educationLicenses
http://commons.wikimedia.org/wiki/File:1405_Sound_Waves_and_the_Ear.jpg
https://creativecommons.org/licenses/by/4.0/
https://stock.adobe.com/images/piano-keys/102050809
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/File:17.4_kHz_sine_wave.flac
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:YAMAHA_DX7.jpg
https://wiki.creativecommons.org/wiki/public_domain
https://en.wikipedia.org/wiki/R2-D2
https://en.wikipedia.org/wiki/Axel_F
https://stock.adobe.com/images/piano-keys/102050809
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/human-hands-holds-a-pieces-of-puzzle-business-solution-concept-teamwork-problem-solving-hand-drawn-colored-vector-illustration-isolated-on-light-background-modern-trendy-flat-cartoon-style/600652890
https://stock.adobe.com/enterprise-conditions#educationLicenses

