
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/10/24 10:30  AM

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call by value

‣ number-to-speech

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

functions libraries

Basic building blocks for programming

2

any program you might want to write

objects

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

functions loopsdivide a program
into functions

functions

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call by value

‣ number-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Functions

Java function (static method).

・Takes zero or more input arguments.

・Returns zero or one output value.

・May cause side effects.
 
 
Benefits. Makes code easier to read, test, debug, reuse, and extend.
 
 
Familiar examples.

・Built-in functions: Math.random(), Math.abs(), Integer.parseInt().

・Our I/O libraries: StdIn.readInt(), StdDraw.line(), StdAudio.play().

・User-defined functions: main().

4

more general than
mathematical functions

function f (x)
side

effects

input x

output f (x)

Flow of control

Mechanics of a function call.

・Control transfers from calling code to function code, passing argument values.

・Function code executes, producing a return value.

・Control transfers back to calling code.
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Functions provide a useful way to control the flow of execution.

5

public class Max {
 public static void main(String[] args) {
 int a = 26;
 int b = 100;
 int max = Math.max(a, b) ;
 StdOut.println(max);
 }
}

Math.max()

26, 100

100

function call

argument
values

return value

function-call expression
evaluates to return value

To implement a Java function:

・Choose a method name.

・Declare type and name of each parameter variable.

・Specify type for return value.

・Include modifiers.

・Implement method body,
including a return statement.

public static double sum(int n) {

 double result = 0.0;

 for (int j = 1; j <= n; i++)

 result += 1.0 / j;

 return result;

}

Anatomy of a Java function (static method)

6

method body

method
name

return statement

return
type

method header

parameter
name

parameter
type

for now, always
public and static

modifiers

method header

Ex. Harmonic sum: .Hn = 1 +
1
2

+
1
3

+ … +
1
n

Function call trace (i = 0)

7

public class Harmonic {

 public static double sum(int n) {

 double result = 0.0;

 for (int j = 1; j <= n; j++)

 result += 1.0 / j;

 return result;

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int arg = Integer.parseInt(args[i]);

 double value = sum(arg);

 StdOut.println(value);

 }

 }

}

j n result

1 0.0

1 1 1.0

~/cos126/functions> java-introcs Harmonic 1 2 5
1.0

i arg value

0 1 1.0

variable trace in main() variable trace in sum()

Function call trace (i = 1)

8

public class Harmonic {

 public static double sum(int n) {

 double result = 0.0;

 for (int j = 1; j <= n; j++)

 result += 1.0 / j;

 return result;

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int arg = Integer.parseInt(args[i]);

 double value = sum(arg);

 StdOut.println(value);

 }

 }

}

j n result

2 0.0

1 2 1.0

2 2 1.5

~/cos126/functions> java-introcs Harmonic 1 2 5
1.0
1.5

i arg value

0 1 1.0

1 2 1.5

variable trace in main() variable trace in sum()

Function call trace (i = 2)

9

public class Harmonic {

 public static double sum(int n) {

 double result = 0.0;

 for (int j = 1; j <= n; j++)

 result += 1.0 / j;

 return result;

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int arg = Integer.parseInt(args[i]);

 double value = sum(arg);

 StdOut.println(value);

 }

 }

}

j n result

5 0.0

1 5 1.0

2 5 1.5

3 5 1.8333

4 5 2.0833

5 5 2.2833

~/cos126/functions> java-introcs Harmonic 1 2 5
1.0
1.5
2.283333333333333

i arg value

0 1 1.0

1 2 1.5

2 5 2.2833

variable trace in main()

variable trace in sum()

Functions: quiz 1

What is the result of executing this program with the given command-line argument? 

A. 126.0

B. 378.0

C. Compile-time error.

D. Run-time error.

 
 
Very common bug. Ignoring the return value.

10

public class Mystery {

 public static double triple(double x) {
 return 3*x;
 }

 public static void main(String[] args) {
 double x = Double.parseDouble(args[0]);
 triple(x);
 StdOut.println(x);
 }
}

~/cos126/functions> java-introcs Mystery 126.0
126.0

if line containing function call were
x = triple(x);

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call by value

‣ number-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

When a function reaches a return statement, it transfer control back to code that invoked it.

・The type of the return value must be compatible with the function’s return type.

・Java returns a single return value to the calling code.

Single return value

12

public static double sum(int n) {

 double result = 0.0;

 for (int i = 1; i <= n; i++)

 result += 1.0 / i;

 return result;

}

return statement

return type

that value can be of any type
(double, String, int[], …)

Control is transferred back to calling code upon reaching the first return statement.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. This function appears in Java’s Math library.

Multiple return statements

13

public static double signum(double x) {
 if (x < 0.0) return -1.0;
 else if (x > 0.0) return +1.0;
 else if (x == 0.0) return 0.0;
 else return Double.NaN;
}

sign (signum) function

multiple return
statements

signum(x) =
−1 if x < 0

0 if x = 0
+1 if x > 0

equivalent function

public static double signum(double x) {
 if (x < 0.0) return -1.0;
 if (x > 0.0) return +1.0;
 if (x == 0.0) return 0.0;
 return Double.NaN;
}

Multiple arguments

A function can take multiple arguments.

・Each parameter variable has a type and a name.

・The argument values are assigned to the corresponding parameter variables.
 
Ex. Gaussian (normal) probability distribution function: . ϕ(x, μ, σ) = 1

σ 2π
e − 1

2 (x − μ
σ)2

14

public class Gaussian {

 public static double pdf(double x, double mu, double sigma) {
 double z = (x - mu) / sigma;
 return Math.exp(-z*z / 2) / (sigma * Math.sqrt(2 * Math.PI));
 }

}

function takes three
double arguments

pdf(88.0, 90.0, 10.0)

μ xσ

ϕ(x, μ, σ)

Multiple functions

You can define many functions in a class.

・One function can call another function.

・The order in which the functions are defined in the file is unimportant.

15

public class RightTriangle {

 public static double square(double x) {
 return x*x;
 }

 public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
 }

} function calls a function

defined in the same class
function calls a function

defined in a different class
a

b
a2 + b2

Mechanics of a function call

16

public static void main(String[] args) {
 double a = Double.parseDouble(args[0]);
 double b = Double.parseDouble(args[1]);
 double c = hypotenuse(a, b);
}}

main()

variable a b c

value 3.0 4.0

public static double hypotenuse(double a, double b) {
 return Math.sqrt(square(a) + square(b));
}}

hypotenuse(3.0, 4.0)

variable a b

value 3.0 4.0

public static double square(double a) {
 return a*a;
}}

square(3.0)

variable a

value 3.0

3.0

function-call stack

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. These two overloaded functions appear in Java’s Math library.

17

public class Math {

 public static int abs(int x) {
 if (x < 0) return -x;
 else return x;
 }

 public static double abs(double x) {
 if (x < 0) return -x;
 else return x;
 }

}

abs(-126) calls this function
(and evaluates to 126)

abs(-126.0) calls this function
(and evaluates to 126.0)

Overloaded functions

Overloading. Two functions with the same name (but different ordered list of parameter types).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. Java determines which function to call based on list of arguments.

18

public class Gaussian {

 public static double pdf(double x) {
 return pdf(x, 0.0, 1.0);
 }

 public static double pdf(double x, double mu, double sigma) {
 double z = (x - mu) / sigma;
 return Math.exp(-z*z / 2) / (sigma * Math.sqrt(2 * Math.PI));
 }

}

pdf(3.0) calls this function

pdf(3.0, 0.0, 1.0) calls this function

pdf(3.0, 0.0, "126") is incompatible
(compile-time error)

Which value does triple(126) return?  

A. 378

B. 378.0

C. "126126126"

D. Compile-time error.

E. Run-time error.

 
 
 
 
 
Type promotion. When passing an argument to a function (or returning a value),  
Java will attempt to promote it to a compatible type (e.g., from int to double).

Functions: quiz 2

19

if no compatible type,
compile-time error

public class Mystery {

 public static double triple(double x) {
 return 3*x;
 }

 public static String triple(String x) {
 return x + x + x;
 }

}

triple("126")

Def. The scope of a variable is the code that can refer to it by name.
Significance. Can develop functions independently.
Best practice. Declare variables so as to limit their scope.

public class Harmonic {

 public static double sum(int n) {

 double result = 0.0;

 for (int i = 1; i <= n; i++)

 result += 1.0 / i;

 return result;

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int n = Integer.parseInt(args[i]);

 StdOut.println(sum(n));

 }

 }

}

Scope of a variable

20

scope of result

scope of i

code following its declaration, in the same block

scope of i

scope of n
(entire method)

scope of args[]
(entire method)

different variables
named i

variables defined in one function do not
interfere with variables defined in another

scope of n

different variables
named n

Functions: quiz 3

How many different variables named n are created when Harmonic is execute with 10
command-line arguments?  

A. 1

B. 2

C. 10

D. 11

E. 20

21

public class Harmonic {

 public static double sum(int n) {

 double result = 0.0;

 for (int i = 1; i <= n; i++)

 result += 1.0 / i;

 return result;

 }

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++) {

 int n = Integer.parseInt(args[i]);

 StdOut.println(sum(n));

 }

 }

}

Side effects

Def. A side effect of a method is anything it does besides computing and returning a value.

・Print to standard output.

・Draw a circle.

・Play an audio file.

・Display a picture.

・Launch a missile.

・Consume input.

・Mutate an array.

・…
 
 
 
Note. The primary purpose of some methods is to produce side effects, not return values.

22

produce output

stay tuned

differs from medicine

Void functions

A method need not return a value.

・Its purpose is to produce side effects.

・Use keyword void as return type.

・No explicit return statement needed.

23

upon reaching the end of method,
control returns to calling code

public static void loop(String filename, int n) {
 for (int i = 0; i < n; i++) {
 StdAudio.play(filename);
 }
}

loop an audio file n times

public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 if (n <= 0) {
 StdOut.println("n must be positive");
 return;
 }
 ...
}

abort if the wrong number of command-line arguments

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call by value

‣ number-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Java uses call by value to pass arguments to methods.

・Java evaluates each argument expression to produce a value.

・Java assigns each value to the corresponding parameter variable.

Call by value

25

for primitive types, the value is the data-type value;
for arrays (and other non-primitive types),

the value is an “object reference”

public static void main(String[] args) {

 int a = 100;

 int b = 26;

 int max = Math.max(a, 4*b);

 ...

}

public static int max(int x, int y) {

 if (x >= y) return x;

 return y;

}
parameter
variables

argument values

return value

104

100 104

argument
expressions

What does the following program print? 

A. -126

B. 126

C. Compile-time error.

D. Run-time error.

public class Mystery1 {

 public static void negate(int a) {

 a = -a;

 }

 public static void main(String[] args) {

 int a = 126;

 negate(a);

 StdOut.println(a);

 }

}

Functions: quiz 4

26

negate() cannot change the value
stored in the variable a in main()

primitive variable
in main()

a

uninitialized126

primitive variable
in negative()

a

uninitialized126-126

What does the following program print? 

A. 12 6

B. -12 -6

C. Compile-time error.

D. Run-time error.

public class Mystery2 {

 public static void negate(int[] b) {

 for (int i = 0; i < b.length; i++)

 b[i] = -b[i];

 }

 public static void main(String[] args) {

 int[] a = { 12, 6 };

 negate(a);

 StdOut.println(a[0] + " " + a[1]);

 }

}

Functions: quiz 5

27

negate() cannot change the value
stored in the variable a[] in main()

(e.g., length or type of a[])

but negate() can change the array
elements that a[] references

12 6
reference variable

in main()

a[]

reference variable
in negate()

b[]

-12 -6

Side effects with arrays

Functions and arrays.

・A function can have the side effect of changing the elements in an argument array.

・But the function cannot change the argument array itself.

28

public class Mutate {

 public static void shuffle(String[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int r = (int) (Math.random() * (i+1));
 String temp = a[r];
 a[r] = a[i];
 a[i] = temp;
 }
 }

 public static void main(String[] args) {
 shuffle(args);
 for (int i = 0; i < args.length; i++)
 StdOut.println(args[i]);
 }
}

~/cos126/functions> java-introcs Mutate A B C D
C
A
B
D

~/cos126/functions> java-introcs Mutate A B C D
B
A
C
D

~/cos126/functions> java-introcs Mutate COS 126
126
COS

to refer to a different array (e.g., of a different length or type)

shuffle, reverse, sort, shift, ...

swaps a[r] and a[i]

a[] and args[] refer
to the same array

2.1 FUNCTIONS

‣ flow-of-control

‣ properties

‣ call by value

‣ number-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Number-to-speech

Goal. Write a program to say/print a positive integer.
 
 
 
 
 
 
 
Algorithm.

・Split into 3-digit groups, from right-to-left.

・For each group, from left-to-right:
– say 3-digit integer
– if 3-digit integer is not 0, say group name  

(billion, million, thousand)

30

Place Value

OnesThousandsMillionsBillions

2 8 6 4 0 1 0 0 0 4 5 6

number spoken

126 one hundred twenty six

2,024 two thousand twenty four

401,000,011 four hundred one million eleven

see algorithm on next slide

but not for
ones group

use U.S. conventions

Number-to-speech: procedural decomposition

Small-integer rule. If number is 1–19, say number; if 0, say nothing.  

Two-digit rule.

・If number is 0–19, say number.

・Otherwise, break up into tens and ones digits.
– say tens digit as twenty, thirty, …, ninety
– say ones digit

 
Three-digit rule. Break up into hundreds digit and 2-digit remainder.

・If hundreds digit is not 0, say digit, followed by hundred.

・Say 2-digit remainder.

31

two-digit rule

small-integer rule

small-integer rule

small-integer rule

number spoken

6 six

0 [nothing]

26 twenty six

126 one hundred twenty-six

Text-to-speech approach

Domain-specific synthesis. Concatenate pre-recorded words to form desired output.

32

hundred.wav1.wav 6.wav20.wav

speaking the number 126

word audio file

1, 2, 3, …, 19 1.wav, 2.wav, 3.wav, …

20, 30, 40, …, 90 20.wav, 30.wav, 40.wav, …

hundred hundred.wav

thousand thousand.wav

million million.wav

billion billion.wav

vocabulary

Live coding

33

public class SayNumber {

 // play audio file corresponding to word
 public static void sayWord(String word) {
 StdOut.print(word + " ");
 StdAudio.play(word + ".wav");
 }

 // say integer n for 1-19, nothing for 0
 public static void saySmallInteger(int n) {
 if (n > 0) sayWord("" + n);
 }

 // say integer n for 1-99, nothing for 0
 public static void sayTwoDigitInteger(int n) {
 if (n < 20) saySmallInteger(n);
 else {
 int tensDigit = n / 10;
 int onesDigit = n % 10;
 sayWord("" + (10 * tensDigit));
 saySmallestInteger(onesDigit);
 }
 }

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 sayPositiveInteger(n);
 }

 // say integer n for 1-999, nothing for 0
 public static void sayThreeDigitInteger(int n) {
 int hundredsDigit = n / 100;
 int twoDigits = n % 100;
 if (hundredsDigit > 0) {
 saySmallInteger(hundredsDigit);
 sayWord("hundred");
 }
 sayTwoDigitInteger(twoDigits);
 }

 // say integer n > 0
 public static void sayPositiveInteger(int n) {
 String[] PLACES = { "", "thousand", "million", "billion" };
 int[] groups = new int[PLACES.length];

 for (int i = 0; i < groups.length; i++) {
 groups[i] = n % 1000;
 n = n / 1000;
 }

 for (int i = groups.length - 1; i >= 0; i--) {
 sayThreeDigitInteger(groups[i]);
 if (i > 0 && groups[i] > 0) sayWord(PLACES[i]);
 }
 }

}

extract the
3-digit groups
(right-to-left)

process 3-digit groups (left-to-right)

Testing

Principle. Supply inputs that activate all possible execution paths through program.

34

~/cos126/functions> java-introcs SayNumber 6

 [speaks "six"]

~/cos126/functions> java-introcs SayNumber 26

 [speaks "twenty six"]

~/cos126/functions> java-introcs SayNumber 126

 [speaks "one hundred twenty six"]

~/cos126/functions> java-introcs SayNumber 2024

 [speaks "two thousand twenty four]

~/cos126/functions> java-introcs SayNumber 401000011

 [speaks "four hundred one million eleven"]

no thousands unit

one-digit number

two-digit number

typical case

so that all code gets tested

three-digit number

Function call graph. Graphical representation of different function calls within a program.

Function call graph

35

saySmallInteger()

sayWord()

sayTwoDigitInteger()

sayThreeDigitInteger()

sayPositiveInteger()

StdAudio.play()

Procedural decomposition

Decomposition. Break up a complex programming problem into smaller functional parts.
Procedural decomposition. Implement each part as a separate function.
 
Ex. Say a positive integer.

・Play an audio file corresponding to a word.

・Say a small integer.

・Say a two-digit integer.

・Say a three-digit integer.
 
 
Benefits. Supports the 3 Rs:

・Readability: understand and reason about code.

・Reliability: test, debug, and maintain code.

・Reusability: reuse and share code.

36

Summary

Functions. Provide a fundamental way to change flow of control of program.

・Java evaluates the arguments and passes by value to function.

・Function initializes parameter variables with corresponding argument values.

・Function computes a single return value and returns it to caller.
 
Applications.

・Scientists use mathematical functions to calculate formulas.

・Programmers use functions to build modular programs.

・You use functions for both.
 
This lecture. Write your own functions.
Next lecture. Build reusable libraries of functions.

37

function f (x)
side

effects

input x

output f (x)

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Gears Adobe Stock education license

Function Gradient Adobe Stock education license

Function Machine Wvbailey public domain

Normal Distribution Adobe Stock education license

Chemotherapy Side Effects Adobe Stock education license

Decimal Place Value Adobe Stock education license

Code Testing SAMDesigning education license

SpongeBob SquarePants Multitasking Giphy

Modular Design Modular Management

https://stock.adobe.com/images/vector-gears/12539996
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/function-gradient-icon/555415810
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:Function_machine2.svg
https://wiki.creativecommons.org/wiki/public_domain
https://stock.adobe.com/images/the-standard-normal-distribution-graph-gaussian-bell-graph-curve-bell-shaped-function-vector-illustration-isolated-on-white-background/536545918
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/chemotherapy-side-effects-icons-depict-the-list-of-reactions-and-issues-of-chemo-treatment-on-a-human-who-are-diagnosis-with-cancer/244886859
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/decimals-place-value-chart-in-mathematics/527906603
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/code-testing-line-color-icon/612341019
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://giphy.com/gifs/funny-humor-spongebob-a9RgWy99d17RC
https://www.modularmanagement.com/blog/all-you-need-to-know-about-modularization

