
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/16/24 3:10  PM

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arrays
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Basic building blocks for programming

2

any program you might want to write

objects

functions and libraries

arrays

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

conditionals loops store and process huge amounts of data

arrays

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arraysR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

index value

0 69

1 71

2 73

3 74

4 76

5 78

6 80

7 81

index value

0 A

1 C

2 C

3 T

4 G

5 C

6 G

⋮ ⋮

Your first data structure

4

index value

0 2♥

1 6♠

2 A♦

3 A♥

⋮ ⋮

49 3♣

50 K♣

51 4♠

An array is an indexed sequence of values of the same type.
 
Examples.

・8 notes in a musical scale.

・52 playing cards in a deck.

・300 students in a COS class.

・10 million audio samples in a song.

・4 billion nucleotides in a DNA strand.

・100 billion Google queries in a month.

・1 trillion parameters in a large language model.

・…
 
 
Main purpose. Facilitate storage and manipulation of data.

Processing many values of the same type

5

10 values, with an array

double[] a = new double[10];
...
a[4] = 3.0;
...
a[8] = 8.0;
...
double x = a[4] + a[8];

an easy alternative

1 million values, with an array

double[] a = new double[1000000];
...
a[234567] = 3.0;
...
a[876543] = 8.0;
...
double x = a[234567] + a[876543];

scales to handle
huge amounts of data

10 values, without an array

double a0 = 0.0;
double a1 = 0.0;
double a2 = 0.0;
double a3 = 0.0;
double a4 = 0.0;
double a5 = 0.0;
double a6 = 0.0;
double a7 = 0.0;
double a8 = 0.0;
double a9 = 0.0;
...
a4 = 3.0;
...
a8 = 8.0;
...
double x = a4 + a8;

tedious and error-prone code

Arrays in Java

Create an array. Specify its type and length.
Access an array element. Use name of array, square brackets, and index.

6

operation typical code

declare an array double[] a;

create an array of length n a = new double[n];

declare, create, and initialize an array double[] b = new double[n];

array initializer double[] c = { 0.3, 0.6, 0.1 };

access an array element by index a[i] = b[i-1] + c[i+1];

length of array a.length

all elements initialized to default value
(zero for numeric types, false for boolean)

index can be any expression of type int

Examples of programming with arrays

7

problem code

print array elements,
one per line

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

sum of array elements
double sum = 0.0;
for (int i = 0; i < a.length; i++)
 sum = sum + a[i];

create a new array containing
n random numbers

double[] a = new double[n];
for (int i = 0; i < n; i++)
 a[i] = Math.random();

command-line arguments
int time = Integer.parseInt(args[0]);
String folder = args[1] + "/";

months in the year

String[] months = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
}

array indices go from 0 to a.length - 1

array elements are variables
(can be used as LHS of assignment statement)

array elements are variables
(can be used in expressions)

args[] in main() is a String array

store predefined constants

String[] a = { "A", "B", "C", "D", "E" };
int n = a.length;
for (int i = 0; i < n/2; i++) {
 String temp = a[i];
 a[i] = a[n-i-1];
 a[n-i-1] = temp;
}

Arrays: quiz 1

What are the contents of the array a[] after the loop terminates?  

A. A B C D E

B. A B C B A

C. E D C B A

D. E D C D E

String[] a = { "A", "B", "C", "D", "E" };
int n = a.length;
for (int i = 0; i < n; i++) {
 String temp = a[i];
 a[i] = a[n-i-1];
 a[n-i-1] = temp;
}

8

loop would reverse the array
if loop-continuation condition

were changed to i < n/2

i 0 1 2 3 4

A B C D E

0 E B C D A

1 E D C B A

2 E B C D A

3 E B C D A

4 A B C D E

a[]

trace (at end of each iteration)

swap idiom

Programming with arrays: common bugs

9

bug buggy code error error message

double[] a;
for (int i = 0; i < 10; i++)
 a[i] = Math.random();

uninitialized array
(compile-time error)

~/cos126/arrays> javac ArrayBug1.java
ArrayBug1.java:5: error:
variable a might not have
been initialized
 a[i] = Math.random();
 ^
1 error

double[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = Math.random();

type mismatch error
(compile-time error)

~/cos126/arrays> javac ArrayBug2.java
ArrayBug2.java:3: error:
incompatible types: int[]
cannot be converted to double[]
 double[] a = new int[10];
 ^
1 error

double[] a = new double[10];
for (int i = 1; i <= 10; i++)
 a[i] = Math.random();

array index out of bounds
(run-time error)

~/cos126/arrays> javac ArrayBug3.java
~/cos126/arrays> java ArrayBug3
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException:
Index 10 out of bounds for length 1
 at ArrayBug3.java:5)

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arraysR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Create a deck of cards

Define three arrays:

・Ranks.

・Suits.

・Full deck.
 
 
Use nested for loops to put all cards in the deck.

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 …
2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ …

String[] deck = new String[52];

deck[]

String[] suits = { "♣", "♦", "♥", "♠" };

0 1 2 3

♣ ♦ ♥ ♠
suits[]

String[] ranks = { "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K A
ranks[]

j

j

i

for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[i + 13*j] = ranks[i] + suits[j];

public class Deck {
 public static void main(String[] args) {
 String[] ranks = { "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };

 String[] suits = { "♣", "♦", "♥", "♠" };

 String[] deck = new String[52];
 for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[i + 13*j] = ranks[i] + suits[j];

 for (int i = 0; i < 52; i++)
 System.out.print(deck[i] + " ");
 System.out.println();

 }
}

Create a deck of cards

12

~/cos126/arrays> java Deck

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 3♦ 4♦ 5♦ … 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠ cards in order by suit

Arrays: quiz 2

Which code fragment puts the cards in the array in order by rank?  
 
 
 

A.  

 

B.  

 

C. Both A and B.

D. Neither A nor B.

13

for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[i + 13*j] = rank[i] + suit[j];

exchanging order of loops
still results in cards ordered by suit

(but fills the array in a different order)

~/cos126/arrays> java Deck

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ 5♦ 5♥ 5♠ … Q♣ Q♦ Q♥ Q♠ K♣ K♦ K♥ K♠ A♣ A♦ A♥

for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[4*i + j] = rank[i] + suit[j];

Shuffling

Goal. Rearrange deck of cards in uniformly random order.
 
Algorithm. For each index i from 0 to 51 :

・Pick a uniformly random index r between 0 and i.

・Exchange deck[i] and deck[r].

14

for (int i = 0; i < 52; i++) {
 int r = (int) (Math.random() * (i+1));
 String temp = deck[r];
 deck[r] = deck[i];
 deck[i] = temp;
}

between 0 and i
(equally likely)

Shuffling demo

Algorithm. For each index i from 0 to n−1 :

・Pick a uniformly random index r between 0 and i.

・Exchange a[i] and a[r].

15

Shuffling trace

16

deck[]

i r 0 1 2 3 4 5 6 7 8

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣

0 0 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣

1 0 3♣ 2♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣

2 0 4♣ 2♣ 3♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣

3 2 4♣ 2♣ 5♣ 3♣ 6♣ 7♣ 8♣ 9♣ 10♣

4 1 4♣ 6♣ 5♣ 3♣ 2♣ 7♣ 8♣ 9♣ 10♣

5 0 7♣ 6♣ 5♣ 3♣ 2♣ 4♣ 8♣ 9♣ 10♣

6 4 7♣ 6♣ 5♣ 3♣ 8♣ 4♣ 2♣ 9♣ 10♣

7 7 7♣ 6♣ 5♣ 3♣ 8♣ 4♣ 2♣ 9♣ 10♣

8 1 7♣ 10♣ 5♣ 3♣ 8♣ 4♣ 2♣ 9♣ 6♣

7♣ 10♣ 5♣ 3♣ 8♣ 4♣ 2♣ 9♣ 6♣

trace of variables (at end of each iteration)

for (int i = 0; i < 9; i++) {
 int r = (int) (Math.random() * (i+1));
 String temp = deck[r];
 deck[r] = deck[i];
 deck[i] = temp;
}

Shuffling a deck of cards: implementation

17

public class ShuffledDeck {
 public static void main(String[] args) {
 String[] ranks = { "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };

 String[] suits = { "♣", "♦", "♥", "♠" };
 int RANKS = ranks.length;
 int SUITS = suits.length;
 int n = RANKS * SUITS;

 String[] deck = new String[n];
 for (int j = 0; j < SUITS; j++)
 for (int i = 0; i < RANKS; i++)
 deck[i + RANKS*j] = ranks[i] + suits[j];

 for (int i = 0; i < n; i++) {
 int r = (int) (Math.random() * (i+1));
 String temp = deck[r];
 deck[r] = deck[i];
 deck[i] = temp;
 }

 for (int i = 0; i < n; i++)
 System.out.print(deck[i] + " ");

 }
}

~/cos126/arrays> java ShuffledDeck

8♠ A♦ A♥ 9♦ 6♥ 7♥ 9♠ Q♥ … K♣ 2♣ 6♦ 2♦ 5♥

~/cos126/arrays> java ShuffledDeck

K♦ J♥ 7♦ 9♦ Q♦ 5♥ 6♥ 9♥ … Q♥ K♠ 4♦ 6♠ 7♣

avoid “magic constants”
(such as 4, 13, and 52)

create deck

shuffle deck

print deck

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arraysR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Sound. The perceptible vibration of air by the ear.

Crash course in sound

19
https://javalab.org/en/tuning_fork_and_sound_wave_en

https://javalab.org/en/tuning_fork_and_sound_wave_en/

time t
(seconds)

0

+1

−1

amplitude y(t)

1/40 second of concert A
(sine wave with frequency 220 Hz)

time t
(seconds)

0

+1

−1

amplitude y(t)

1/40 second of concert A
(sine wave with frequency 880 Hz)

Audio. An analog or digital encoding of sound.
Audio formats. Vinyl, tape cassette, CD, WAV, MP3, AIFC, … 

Audio signal. Real-valued (between −1 and +1) function of time.

・A loudspeaker converts an audio signal into sound.

・A microphone converts sound into an audio signal.

time t
(seconds)

0

+1

−1

amplitude y(t)

1 / 40

1/40 second of concert A
(sine wave with frequency 440 Hz)

Crash course in digital audio

20

value (amplitude) relates to
change in sound pressure

Audio sampling

Goal. Convert a continuous-time signal into a discrete-time signal.

・A sample is a signal value at specific point in time.

・Take samples at evenly spaced points.

21

samples / second samples samples from a sine wave (440 Hz)

5,512 138

11,025 276

22,050 552

44,100 1103

1/40 second of concert A

a standard
sampling rate

model sound with an array of
real numbers between −1 and +1

(using 44,100 samples per second)

Standard audio library

StdAudio. Our library for playing, reading, and saving digital audio.

22

R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

public class StdAudio

static int SAMPLE_RATE 44,100 (CD quality audio)

static void play(String filename) play the audio file

static void playInBackground(String filename) play the audio file in the background

static void play(double sample) play the sample

static void play(double[] samples) play the samples

static double[] read(String filename) read the samples from an audio file

static void save(String filename, double[] samples) save the samples to an audio file

static void drain() play any samples left in buffer

 ⋮ ⋮

supported file formats:
WAV, AU, AIFF, MIDI

1 hour of audio comprises
about 159 million samples

available with javac-introcs
and java-introcs commands

Volume. Perceived loudness of a sound.
 
Audio gain. Multiply all samples by the same constant α.

・ ⇒ amplifies audio signal.

・ ⇒ attenuates audio signal.
|α | > 1
|α | < 1

Audio gain

23

public class Gain {
 public static void main(String[] args) {
 double[] samples = StdAudio.read(args[0]);
 double alpha = Double.parseDouble(args[1]);

 for (int i = 0; i < samples.length; i++) {
 samples[i] = samples[i] * alpha;
 if (samples[i] > +1.0) samples[i] = +1.0;
 if (samples[i] < -1.0) samples[i] = -1.0;
 }

 StdAudio.play(samples);
 }
}

~/cos126/arrays> java-introcs Gain Game.wav 1.0

 [plays sound effect]

~/cos126/arrays> java-introcs Gain Game.wav 2.0

 [plays louder version]

~/cos126/arrays> java-introcs Gain Game.wav 0.5

 [plays quieter version]

~/cos126/arrays> java-introcs Gain Game.wav 0.0

 [plays silence]

~/cos126/arrays> java-introcs Gain Game.wav -1.0

 [plays inverted version]

“clipping”

Arrays: quiz 3

What sound will the following command produce? 

A. Original audio.

B. Silence.

C. Static.

D. Ear-shattering noise.

E. None of the above.

24

double[] samples = StdAudio.read("HelloWorld.wav");
for (int i = 0; i < samples.length; i++) {
 if (samples[i] < 0.0) samples[i] = -1.0;
 else if (samples[i] > 0.0) samples[i] = +1.0;
}
StdAudio.play(samples);

can keep only 1 bit per sample
and still reconstitute spoken audio

~/cos126/arrays> java-introcs Gain HelloWorld.wav 9999.99

 [plays sound with ???]

effectively equivalent to

Superposition. To combine two (or more) audio signals, add the corresponding samples.
 
 
Ex 1. Add audio signals of notes to produce a chord.

Principle of superposition

25

A

C♯

E

A major chord

sound waves are mechanical waves

Superposition. To combine two (or more) audio signals, add the corresponding samples.
 

Ex 1. Add audio signals of notes to produce a chord.
Ex 2. Add audio signals of parts, instruments, and voices to produce a musical composition.

Principle of superposition

26

 = 120

“Twinkle, Twinkle, Little Star”
(two parts)

 = 120melody

harmony

Principle of superposition

Superposition. To combine two (or more) audio signals, add the corresponding samples.
 

Ex 1. Add audio signals of notes to produce a chord.
Ex 2. Add audio signals of parts, instruments, and voices to produce a musical composition.
Ex 3. Noise-cancelling headphones.

27

~/cos126/arrays> java-introcs Superpose CranePiano.wav CraneClarinet.wav CraneCello.wav CraneClavichord.wav

 [plays "The Crane" score]

~/cos126/arrays> java-introcs Superpose PokerFaceSawSynth.wav PokerFacePanFlute.wav ...

 [plays "Poker Face" score]

~/cos126/arrays> java-introcs Superpose SynthA.wav

 [plays Synth A]

~/cos126/arrays> java-introcs Superpose InvertedSynthA.wav

 [plays inverted Synth A]

~/cos126/arrays> java-introcs Superpose SynthA.wav InvertedSynthA.wav

 [plays silence]

~/cos126/arrays> java-introcs Superpose PacManMelody.wav

 [plays Pac-Man startup melody]

~/cos126/arrays> java-introcs Superpose PacManHarmony.wav

 [plays Pac-Man startup harmony]

~/cos126/arrays> java-introcs Superpose PacManMelody.wav PacManHarmony.wav

 [plays Pac-Man startup melody and harmony]

Superposition of audio files

28

public class Superpose {
 public static void main(String[] args) {

 double[] results = StdAudio.read(args[0]);
 for (int i = 1; i < args.length; i++) {
 double[] samples = StdAudio.read(args[i]);
 for (int j = 0; j < samples.length; j++) {
 results[j] = results[j] + samples[j];
 }
 }

 StdAudio.play(results);
 }
}

play the results

args[] in main() is a String array

use a loop to add the
corresponding samples

(assumes all arrays of same length)

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arraysR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Java array. An array is an indexed sequence of values of the same type.
 
Computer memory. Your computer’s memory is an indexed sequence of memory locations.

・Each int, double, or boolean occupies a fixed number of memory locations.

・Array elements are stored in contiguous memory locations.
 
 
 
 
 
 
Key properties.

・Given index i, accessing a[i] is extremely efficient.

・Once you create an array, you can never change its type or length.

・Arrays are reference types, not primitive types.

Memory representation of an array

30

a[]

think of the variable a[] as storing
the memory address of its first element

64 bits

storage for
a double

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Assignment statements with arrays

Consequence 1. The assignment statement b = a makes a and b refer to the same array.
 
Ex.

0.5 0.25 -1.0 0.125 0.5

31

b[]

it does not create a new,
independent, array

0.75 0.0 0.0 0.0 0.0 0.0

double[] a = { 0.5, 0.25, -1.0, 0.125, 0.5 };

double[] b = new double[a.length];

b = a;

b[1] = 0.75;

a[]

array is garbage collected
when no longer accessible

Checking arrays for equality

Consequence 2. The expression a == b checks whether a and b refer to the same array.
 
Ex.

32

a[]

0.5 0.25 -1.0 0.125 0.5 0.5 0.25 -1.0 0.125 0.5

not whether they store
the same sequence of values

double[] a = { 0.5, 0.25, -1.0, 0.125, 0.5 };

double[] b = { 0.5, 0.25, -1.0, 0.125, 0.5 };

System.out.println(a == b); // false

b[]

Copying an array and checking for equality

Q. How to copy an array and check for equality?
A. Use loops.

33

a[]

0.5 0.25 -1.0 0.125 0.5 0.0 0.0 0.0 0.0 0.0

b[]

0.5 0.25 -1.0 0.125 0.5

i i

double[] a = { 0.5, 0.25, -1.0, 0.125, 0.5 };

double[] b = new double[a.length];

for (int i = 0; i < a.length; i++)

 b[i] = a[i];

copying an array

boolean areEqual = true;

for (int i = 0; i < a.length; i++) {

 if (a[i] != b[i])

 areEqual = false;

}

checking two arrays (of same length) for equality

Arrays: quiz 4

What does the following code fragment print? 

A. 0 1 2 0 1 2

B. 0 1 2 1 2 6

C. 1 2 6 0 1 2

D. 1 2 6 1 2 6

34

int[] a = { 1, 2, 6 };

int[] b = new int[a.length];

b = a;

for (int i = 0; i < b.length; i++)

 b[i] = i;

for (int i = 0; i < a.length; i++)

 System.out.print(a[i] + " ");

for (int i = 0; i < b.length; i++)

 System.out.print(b[i] + " ");

a[]

1 2 6 0 0 00 1 2

i
b[]

1.4 ARRAYS

‣ basic concepts

‣ shuffling

‣ digital audio

‣memory representation

‣ two-dimensional arraysR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

A two-dimensional array is a doubly-indexed table of values of the same type.
 
Examples.

・Grades for students in an online class.

・Outcomes of a scientific experiment.

・Customer transactions in a bank.

・Entries in a feature matrix.

・Pixels in a digital image.

・Cells in a spreadsheet.

・…

Two-dimensional arrays

0 1 2 3 4 5 …

0 A A C B A C
1 B B+ B B− A A−
2 C D D B C A
3 A A+ A A− A A+
4 C C B+ C B B−
⋮

grade

st
ud

en
t I

D

column index

ro
w

 in
de

x

36

Two-dimensional arrays in Java

37

a[][]

a[1]

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5] a[2][6] a[2][7]

operation typical code

declare a two-dimensional array double[][] a;

create an m-by-n array a = new double[m][n];

declare, create, and initialize in one statement double[][] a = new double[m][n];

refer to an array element by index a[i][j] = b[i][j] + c[j][k];

number of rows a.length

number of columns a[i].length

all elements initialized to default value
(zero for numeric types, false for boolean)

can be different for each row
(“ragged” array)

a 3-by-8 array

same conventions
as matrices

Vector and matrix calculations

Mathematical abstractions. Vectors and matrices.
Java implementation. 1D arrays and 2D arrays.

38

vector addition

double[] c = new double[n];
for (int i = 0; i < n; i++)
 c[i] = a[i] + b[i];

matrix addition

double[][] c = new double[n][n];
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 c[i][j] = a[i][j] + b[i][j];

(0.8, 0.7, 0.5) = (0.3, 0.6, 0.1) + (0.5, 0.1, 0.4)

c a b

<latexit sha1_base64="igHGagDlf+UEtbDzaGQon4FX9cY=">AAADb3icbVLbitRAEO1MvKzxshcffBCkcVAUIaTntgOLsKAPPq7g7C5MhqXTqZlpNumE7o7OEOaL/Bof1a/wD+wkrcytIMWpU111qisd5QlXOgh+Oi33zt179w8eeA8fPX5yeHR8cqmyQjIYsSzJ5HVEFSRcwEhzncB1LoGmUQJX0e2HKn/1FaTimfiilzlMUjoTfMoZ1Ya6OXY+hhIEfGNZmlIRh1RKulRagmbzkvid/soLI5hxUUYp1ZIvVh7x+/g1DqwfYByGXuD3TET8oOY6DTWog17th/ifeSGI+H83E569D8/wjkrgn9pelSdWpWs1G66m+jZotPZIGIV3+xWGdVHX3qZpR9aGJutUd11hS+LmqB34QW14FxAL2sjahdn7SRhnrEhBaJZQpcYkyPWkpFJzloCZuVCQU3ZLZzA2UNAU1KSs//cKvzJMjKeZNJ/QuGbXK0qaKrVMI3PSDDhX27mK3JcbF3o6nJRc5IUGwRqhaZFgneHq8eCYS2A6WRpAmeRmVszmVFKmzRPbUKl758A2blIuCsFZFsMWm+iFlrTaItne2S647Phk4Pc/99rnQ7vPA/QcvURvEEGn6Bx9QhdohJjz3fnh/HJ+t/64z9wXLm6Othxb8xRtmPv2LxtY+Ko=</latexit>2

64
1.5 0.5 0.6

0.4 1.0 0.2

0.6 0.4 0.8

3

75 =

2

64
0.7 0.2 0.1

0.3 0.6 0.1

0.5 0.1 0.4

3

75 +

2

64
0.8 0.3 0.5

0.1 0.4 0.1

0.1 0.3 0.4

3

75

BAC

Mathematical abstractions. Vectors and matrices.
Java implementation. 1D arrays and 2D arrays.

Vector and matrix calculations

39

i a[i] b[i] a[i]*b[i] sum

0 0.3 0.5 0.15 0.15

1 0.6 0.1 0.06 0.21

2 0.1 0.4 0.04 0.25

vector dot product

double sum = 0.0;
for (int i = 0; i < n; i++)
 sum += a[i] * b[i];

matrix multiplication

double[][] c = new double[n][n];
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];

C

<latexit sha1_base64="OFksvv3VQoEVzWcV/j6Fm+6vSZY=">AAADd3icbVLLbtswEKSsPlL3laTHHkrUaJCTICqS4yIoEKCXHnpIgToJYBkBRa1tIhIlkFRrQ/BX9Wtybb+it9KUGtiOFxA5O7vcWa6YlBlX2vfvnI776PGTp3vPus9fvHz1ev/g8FIVlWQwZEVWyOuEKsi4gKHmOoPrUgLNkwyuktvPq/jVD5CKF+K7XpQwzulU8AlnVBvq5sD5GksQ8JMVeU5FGlMp6UJpCZrNauIF0bIbJzDlok5yqiWfL7u+F33ER9j3TgK7hQTjODb0CWnovt2CqGHDqGGbYBjgxroxiPS+6Mo/+xSf4R1qp005u95LWa/fcpaKWseq7NIwCrHmOSi8W2fQ9GnXqNX5X25Nh6ylhVu3uNnv+Z5vDT8EpAU91NqFmf9hnBasykFollGlRsQv9bimUnOWgem5UlBSdkunMDJQUNP/uLb/fYk/GCbFk0KaT2hs2fUTNc2VWuSJyTQdztR2bEXuio0qPRmMay7KSoNgjdCkyrAu8OoR4ZRLYDpbGECZ5KZXzGZUUqbNU9tQsbVLYBs3qeeV4KxIYYvN9FxLujRTJNszewguA4/0vehb2DsftPPcQ2/Re3SMCDpF5+gLukBDxJxfzp3z2/nT+eu+c4/c4ya147Rn3qANc8k/ECr8Ug==</latexit>2

64
0.59 0.32 0.41

0.31 0.36 0.25

0.45 0.31 0.42

3

75 =

2

64
0.7 0.2 0.1

0.3 0.6 0.1

0.5 0.1 0.4

3

75 ⇥

2

64
0.8 0.3 0.5

0.1 0.4 0.1

0.1 0.3 0.4

3

75

BA

0.25 = (0.3, 0.6, 0.1) ⋅ (0.5, 0.1, 0.4)

a b

An array is an indexed sequence of values of the same type.

・Serves as a basic building block in programming.

・Enables efficient manipulation of large amounts of data.
 
 
Some examples. [in this course]

Summary

40

digital image digital videodigital audio signal

T A G A T G T G C T A G C

DNA string

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Johnson Arch Danielle Alio Capparella by photographer

DNA Adobe Stock education license

CERN Server Florian Hirzinger CC BY-SA 3.0

Fanned Cards clipart-library.com non-commercial use

Bugs Adobe Stock education license

Deck of Cards Adobe Stock education license

Card Shuffling Adobe Stock education license

Sound Wave Set Adobe Stock education license

Tuning Fork and Sound Wave Javalab

Ear Listening Adobe Stock education license

Tuning Fork Sound Effect Pixabay Pixabay content license

https://reunions.princeton.edu/project/campus/
https://stock.adobe.com/images/molecular-structure-of-dna-infographic-educational-vector-illustration/194228186
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://commons.wikimedia.org/wiki/File:CERN_Server_03.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://clipart-library.com/clipart/LTd5gKKpc.htm
https://stock.adobe.com/images/set-of-graphical-hand-drawn-bugs-butterfly/493020240?prev_url=detail
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/blue-deck-of-playing-cards-with-clipping-path/76918629
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/playing-cards-in-hands-with-red-nails-flat-illustration-card-shuffling-black-skinned-croupier-in-casino-vector-illustration-for-gambling-industry-cards-rules-and-web-banners-for-online-casino/597000199
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/sound-wave-set-sound-waves-equalizer-audio-waves-radio-signal-music-recording-vector-illustration/535452724
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://javalab.org/en/tuning_fork_and_sound_wave_en/
https://stock.adobe.com/images/ear-listening-hearing-audio-sound-waves-vector-icon/166628592
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://pixabay.com/sound-effects/tuning-fork-440-hz-resonance-box-22406/
https://pixabay.com/service/license-summary/

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

Credits

media source license

Retro Microphone Adobe Stock education license

Headphones Adobe Stock education license

Volume Control Adobe Stock education license

Noise Cancellation Adobe Stock education license

Boy with Headphones Adobe Stock education license

Pac-Man Startup Sound Bandai Namco Entertainment

Crane Song Matthew White public domain

Poker Face Lady Gaga

Scalar, Vector, and Matrix Adobe Stock education license

Mandrill USC SIPI Image Database

Johnson Arch Danielle Alio Capparella by photographer

https://stock.adobe.com/images/set-of-illustrations-of-retro-microphone-isolated-on-white-background-design-element-for-poster-card-banner-logo-label-sign-badge-t-shirt-vector-illustration/367944422
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/headphones/20254890
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/vector-volume-control-on-a-white-background/87589087
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/how-does-noise-cancellation-technology-works/481260545
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/one-smiling-black-little-boy-with-eyes-closed-enjoy-listening-to-music-using-wireless-headphones-half-length-flat-design-style-character-cartoon/606232003
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.bandainamcoent.com/games/pac-man
https://resources.trinitycollege.com/learners/music/rounds-canons-my-dame
https://en.wikipedia.org/wiki/Public_domain
https://en.wikipedia.org/wiki/Poker_Face_(song)
https://stock.adobe.com/images/scalars-vectors-and-matrices-in-linear-algebra-in-mathematics/619610140
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://sipi.usc.edu/database/database.php?volume=misc
https://reunions.princeton.edu/project/campus/

