Lecture 20: Cryptography, continued

some history

- Caesar cipher, rot13
- substitution ciphers, etc.
- Enigma (Turing)

modern secret key cryptography

- DES, AES

public key cryptography

RSA, digital signatures, cryptographic hashing

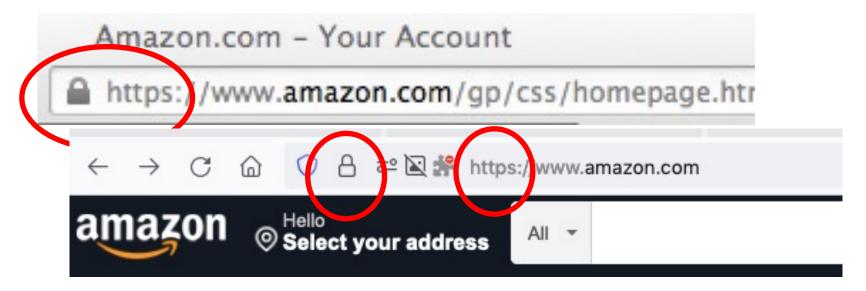
cryptography in practice

- e-commerce
- Tor browser
- Bitcoin, blockchain
- politics

Properties of public/private keys

- can't deduce the public key from the private, or vice versa
- can't find another encryption key that works with the decryption key
- keys are long enough that brute force search is infeasible

nasty problems:


- if a key is lost, all messages and signatures are lost
- if a key is compromised, all messages and signatures may be compromised
- it's hard to revoke a key
- it's hard to repudiate a key (and hard to distinguish that from revoking)

authentication

- how do you know who you are talking to? is that really Alice's public key?
- public key infrastructure, web of trust, digital certificates

Encrypted transactions, online shopping

- browser says "prove that you're really Amazon"
- Amazon says "here's my signed certificate from a CA"
 - encrypted with the CA's private key
- browser decrypts certificate with CA's public key
- browser generates a random key, encrypts it with Amazon's public key, sends it to Amazon
- browser and Amazon use AES to talk securely

Government surveillance / Snowden revelations

- 2013: Edward Snowden, contractor at NSA, left his job
- flew to Hong Kong
- met several trusted journalists
- handed over thousands of highly classified documents
- that revealed global surveillance by NSA, and similar agencies in other countries
- with cooperation of telecomm and Internet companies
- went to Russia, given asylum
 - citizenship in Sept 2022
- called both traitor and hero in the US

Virtual Private Networks (VPN)

- a protected connection from your connection to a private network
 - e.g., from your laptop at home to Princeton's network
 - as if you were on campus
- created an encrypted "tunnel" from your computer to VPN host
- your traffic appears to come from / go to the VPN host, not you
 - needs a VPN client on your computer
 - e.g., Palo Alto Netwokrs GlobalProtect at PU
- you can still be tracked by cookies, fingerprinting, etc.
- you have to trust the VPN client and host
- it will be slower than a direct connection

Tor: The Onion Router

- anonymous routing through the Internet using TCP
 - receiver can't determine the sender's address
- sender creates a random path through a network of Tor relays
 - path is changed frequently
- each part of the path is encrypted
 - separate encryption keys for each hop
- each relay only knows who gave it data and who it sends data to
 - no relay knows the whole path
- messages are wrapped up with nested encryptions, one for each component of the path
 - each relay removes one layer of encryption before passing it on
- potentially vulnerable to some attacks
 - traffic correlation at end points
 - exit nodes can be blocked or monitored

Bitcoin and other cryptocurrencies

- how do we create a currency that is anonymous like cash
 - can't tell who spends or receives it
- is not dependent on any government
 - i.e., not a "fiat currency" like \$, £, €, ...
- has the other desirable properties of money:
 - portable, durable, divisible, recognizable, difficult to counterfeit
- one solution:
 - use cryptography to control the creation and transfer of money, without relying on any central authority

Bitcoin

- exists only in digital form: nothing physical like gold
 - no central authority or control
 - anonymous ownership and transfer
 - value fluctuates wildly
- how are bitcoins created?
- how is ownership validated & transferred without double spending?
- blockchain: a shared public ledger of <u>all</u> transactions
- a transaction transfers value from one wallet to another
 - signed digitally by the sender
 - broadcast via peer to peer network so the block chain can be updated
- "mining" confirms transactions by adding them to the blockchain
 - competitive distributed consensus algorithm
 - takes work to confirm; new bitcoins are created as a reward
 - blocks are protected by cryptographic hashing; each new one depends on all previous ones

Blockchain

- a distributed ledger of transactions stored as a sequence of data blocks
- the blocks are protected and linked by cryptographic hashing
- a block can't be changed without changing all blocks that precede it
- cryptocurrencies are the most frequent use, but not the only one
 - Ethereum blockchain, ETH currency

Crypto politics

- cryptographic techniques as weapons of war?
 - (strong) cryptography was classified as "munitions" in USA
 - fell under International Traffic in Arms Regulations and follow-ons
- export control laws prohibited export of cryptographic code
 - though it was ok to export books and T-shirts with code and everyone else in the world had it anyway
 - changed during 2000, but there are still restrictions
- does the government have the right / duty ...
 - to control cryptographic algorithms and programs?
 - to require trapdoors, key escrow, or similar mechanisms?
 - to prevent reverse-engineering of cryptographic devices?
 - to prevent research in cryptographic techniques?
- do corporations have the right ...
 - to prevent publication of cryptographic techniques?
 - to prevent reverse-engineering of cryptographic devices?
- how do we balance individual rights, property rights, & societal rights?

Summary of crypto

- secret/symmetric key algorithms: AES, ...
 - key distribution problem: everyone has to have the key
- public key algorithms: RSA, ...
 - solves key distribution problem, but authentication is still important
 - also permits digital signatures
 - much slower than secret key, so used mainly for key exchange
- security is entirely in the key
 - "security by obscurity" does not work: bad guys know everything
 - brute force attacks work if keys are too short or easy
- good cryptography is hard
 - you can't invent your own methods
 - you can't trust "secret" or proprietary methods
- people are the weak link
 - complicated or awkward systems will be subverted, ignored or misused
 - social engineering attacks are effective ignorance, incompetence, misguided helpfulness
- if all else fails, try bribery, burglary, blackmail, brutality

Cryptography is important

- it protects our privacy and security
 - access to computers
 - email
 - online shopping, banking, taxes
 - electronic voting
 - **–** ...
- it can restrict our rights and freedoms
 - digital rights management: limits on what we can do with music, movies, software, ...
- it helps good guys and bad guys alike