Lecture 15: Protocols

- precise rules that govern communication between two parties
- TCP/IP: the basic Internet protocols
- IP: Internet protocol (bottom level)
 - all packets are shipped from network to network as IP packets
 - "best effort": no guarantees on quality of service or reliability
 - each physical network has its own format for carrying IP packets
- TCP: transmission control protocol
 - creates a reliable 2-way data stream using IP errors are detected and corrected
 - most things we think of as "Internet" use TCP
- "application-level" protocols, mostly built from TCP
 - HTTP (web), SMTP (mail), SSH (secure login), FTP (file transfer), ...

UDP: user datagram protocol

- simple unreliable datagram protocol (errors not detected)
- used in DNS, voice, video, gaming, ...

Packets

- packet: a sequence of bytes carrying information
 - usually over a network connection
- bytes have a specific sequence, format, organization
 - usually as specified in a protocol

typical network packet includes

- source (where it comes from)
- destination (where it goes to)
- size or length information (how big is the data part)
- miscellaneous information (type, version, info to detect errors, ...)
- the data itself ("payload")

typical sizes range from

- a few bytes
- 150-1500 bytes (Ethernet packets)
- 100-65,000 bytes (IP packets)

What's in an IP packet

• a "header" that contains

- protocol version, type of packet, length of header, length of data
- fragmentation info in case it was broken into pieces
- time to live: maximum number of hops before packet is discarded each gateway decreases this by 1
- source & destination addresses (32 bits for IPv4, 128 bits for IPv6)
- checksum of header information
 - redundant info to detect errors in header information only, not data itself
- etc.; about 20-40 bytes in header

the actual data

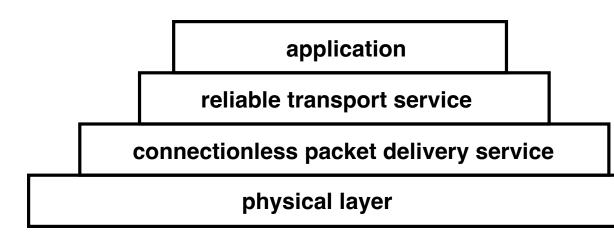
- up to 64 KB of data ("payload")
- IPv4:

IP: Internet Protocol

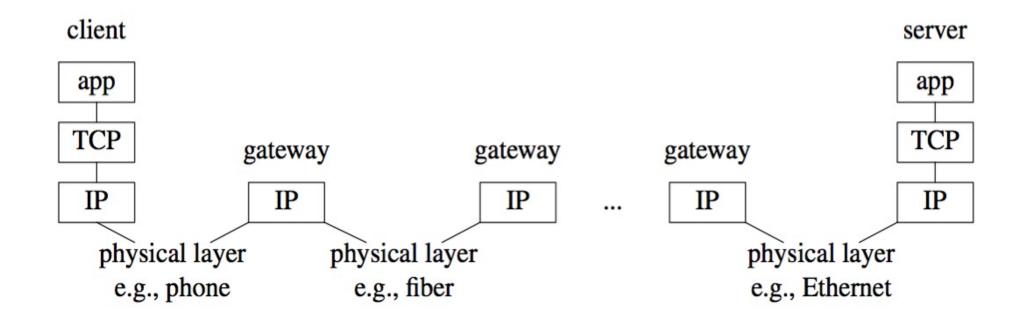
• IP provides an unreliable connectionless packet delivery service

- every packet has full source & destination addresses
- every packet is independent of all others

• IP packets are *datagrams*


- individually addressed packages, like postcards in the postal system "connectionless"
- stateless: no memory from one packet to next
 each packet is independent of others, even if in sequence and going same place
- unreliable: packets can be lost or duplicated ("best effort" delivery)
- packets can be delivered out of order
- contents can be wrong (though error rates are usually very low)
- no speed control: packets can arrive too fast to be processed
- limited size: long messages have to be split up and then reassembled
- higher level protocols use IP packets to carry information
- IP packets are carried on a wide variety of physical media

TCP: Transmission Control Protocol

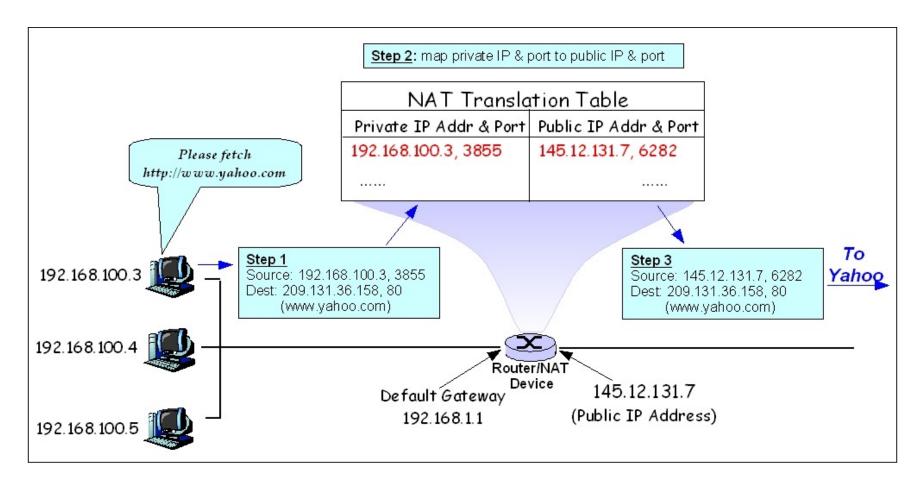

- a reliable 2-way byte stream built with IP
- a TCP connection is established to a specific host
 - and a specific "port" at that host
- each port provides a specific service
 - SSH = 22, SMTP = 25, HTTP = 80, HTTPS = 443, ...
- a message is broken into 1 or more segments
- each TCP segment has a header (source, destination, etc) + data
 - header includes checksum for error detection, and sequence number to preserve order and detect missing or duplicated packets
- each TCP segment is wrapped in an IP packet and sent
 - has to be positively acknowledged to ensure that it arrived safely otherwise, re-send it after a time interval
- TCP is the basis of most higher-level protocols

Higher level protocols

- SSH: secure login
- SMTP: mail transfer
- HTTP: hypertext transfer => Web
- protocol layering:
 - a single protocol can't do everything
 - higher-level protocols build elaborate operations out of simpler ones
 - each layer uses only the services of the one directly below and provides the services expected by the layer above
 - all communication is between peer levels: layer N destination receives exactly the object sent by layer N source

How information flows

How things are connected


- local nets connected to local Internet Service Provider (ISP)
- these in turn may connect to regional ISPs
- and then to larger ones like Comcast, Verizon, AT&T, ...
 - but it may be all one provider
- traffic is exchanged at Internet exchanges (IXP)
 - large and small, formal and informal, profit and non-profit

home connections

- cable, fiber: maybe 100-500 Mbps (you to/from your ISP)
- 5G wireless: 100-300 Mbps

Network Address Translation (NAT)

- a partial solution to running out of IPv4 addresses
- router maps multiple private hosts to one public IP address
 - private net (usually 192.168.0.0 to 192.168.255.255 for home routers)
 - maintains a table of (internal IP, port) to (external IP, port) addresses
 - converts headers in both directions as traffic flows

Coping with bandwidth limits

- data flows no faster than the slowest link
- limits to how much data can pass per unit time
 - no guarantees about packet delivery
 - no guarantees about bandwidth, delay or quality of service
 IP telephony is hard because voice traffic requires limited delay and jitter
 video is somewhat easier but needs a lot more bandwidth
- caching
 - save previous data so it doesn't have to be retrieved again
- compression, encoding
 - to improve use of available bandwidth
 - don't send redundant or unnecessary information text, code, etc., can be compressed and recreated exactly music, pictures, movies are compressed with some information discarded

Internet ideas

packets versus circuits

different models (mail vs phone)

names and addresses

- what is a computer called, how to find it
- routing
 - how to get from here to there

protocols and standards

 Internet works because of IP as common mechanism higher level protocols all use IP specific hardware technologies carry IP packets

layering

- divide system into layers
 - each of which provides services to next higher level while calling on service of next lower level
- a way to organize and control complexity, hide details

Internet technical issues

privacy & security are hard

- data passes through shared unregulated dispersed media and sites scattered over the whole world
- it's hard to control access & protect information along the way
- many network technologies (e.g., Ethernet, wireless) use broadcast encryption is necessary to maintain privacy
- many mechanisms are not robust against intentional misuse
- it's easy to lie about who you are

service guarantees are hard

- no assurance of reliable delivery, let alone of bandwidth, delay or jitter
- some resources are running low
 - IPv4 addresses are all assigned
 - IPv6 (the next generation) uses 128-bit addresses acceptance growing, by necessity
- but it has handled exponential growth amazingly well