Lecture 14: Networking

history and background

- telephone system
- local area networks

Internet

- architecture: what the pieces are and how they fit together
- names and addresses: what's your name and number?
 Domain Name System, IP addresses
- routing: how to get from here to there traceroute, ping
- fundamental protocols and layers: how pieces talk to each other IP, TCP
- higher level protocols and services:

HTTP, SSH, SMTP, IMAP, ...; web, email, instant messaging, peer to peer, ...

• Web

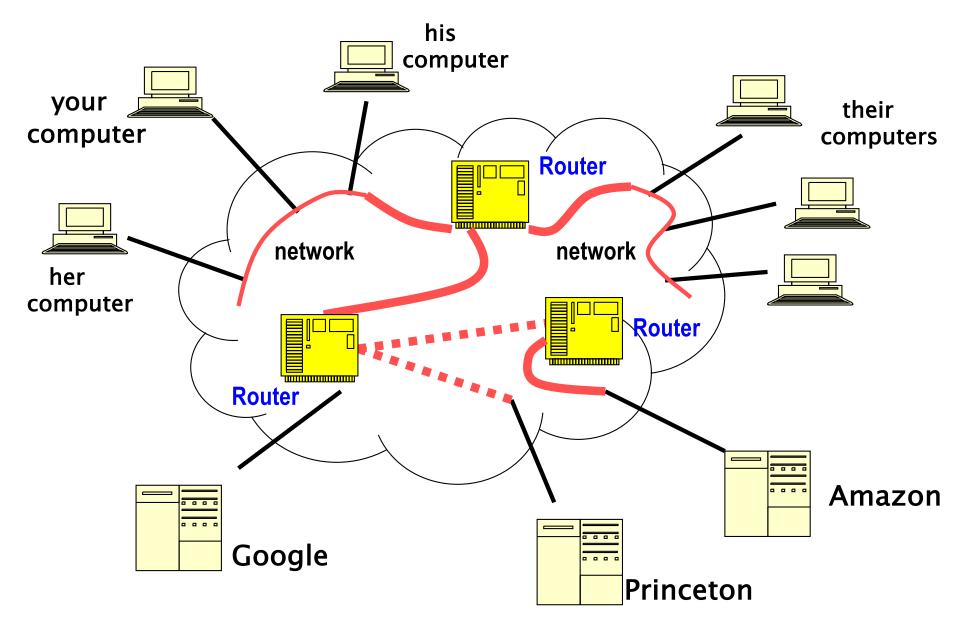
- what makes it work: URL, HTTP, HTML, browser

Telephone system (Alexander Graham Bell, 1876)

- organizing principles, all based on voice traffic:
 - voice calls need only a narrow bandwidth channel
 - each call uses a dedicated circuit, with long setup and hold times
 - telephone number is a unique identifier
 - fixed routing for a specific call
 - parallel signaling network; data separated from control
 - simple user interface: all intelligence inside network
 - guarantees on quality of service; high reliability
- running out of some resources (area codes, 800/888/877/866/855/844, ...)
- traffic model changing rapidly (cell phones, data, ...)
- technology changing rapidly (wireless, Internet, ...)
- worldwide evolution from highly regulated and/or governmentoperated to deregulated / private
 - highly competitive
 - incumbent carriers threatened by Internet

Local Area Networks; Ethernet

- a LAN connects computers ("hosts") in a small geographical area
- Ethernet is the most widely used LAN technology
 - developed by Bob Metcalfe & David Boggs at Xerox PARC, 1973
 - each host has a unique 48-bit identification number
 - data sent from one host to another in "packets" of 100-1500 bytes including source and destination address and error checking bits typical data rate 10-1000 Mbits/sec; limits on cable length


packet:	hdr	src	dest	type	data	check
•	8	6	6	2	46-1500 bytes	4

- "broadcast" technology: data sent to all connected hosts
 - sender broadcasts, but if it detects someone else sending, stops, waits a random interval, tries again
- wireless Ethernet uses radio to carry signals
 - logical behavior is exactly like a wired Ethernet

Connecting networks (wide area networks / WAN)

- how do we connect LANs to each other?
 - LANs may have different properties
 - may be far away
- names & addresses now needed to identify other networks and hosts
- routing needed to find a path if multiple networks are involved
 - can't have each network connected directly to all others
- protocols to agree on format of information and how it is exchanged
 - especially if networks are different kinds that use different format for packets different physical and electrical properties different names and addresses themselves
- how do we handle errors, delays, overload, etc.?
- how does it scale as the number of networks gets really big?

Gateways and Routers

The Internet

- millions of independent networks that are connected
 - NOT a giant computer or a single network
 - each network may serve many host computers
- nearby computers are connected by a local area network
 - most often Ethernet (including wireless)
- information travels through networks in small "packets"
 - each packet independent of all others
 like individual envelopes through the mail
 - all packets have the same format
 - standard protocols for format of info and behavior
- networks connected by specialized gateway computers (routers)
 - route packets of information from one network to the next
 - gateways continuously exchange routing information
- each packet passes through multiple gateways
 - gateway passes packet to gateway that is closer to ultimate destination
 - gateways usually operated by different companies

Internet History

- 1961: packet switching concept (Leonard Kleinrock, MIT, UCLA)
- 1960's: ARPANET, funding from DARPA (Dept of Defense)
- 1969: first Internet communication
- 1972: first network email
- 1973: basic protocols: TCP/IP (Bob Kahn *64, Vint Cerf)
- 1980's: National Science Foundation funding, NSFNet (AI Gore)
- 1980's: Internet Engineering Task Force for technical decisions
- 1990's: commercialization, Web, dot-com boom
- 2000: dot-com bust
- 2010: universal availability
- 2020: increasing fragmentation, government controls
- for lots more, http://www.isoc.org/internet/history/

Basic mechanisms

- **names** for computers
 - princeton.edu, finance.yahoo.com, www.whitehouse.gov, kernighan.net, ...
- addresses for identifying networks and computers
 - each has a unique number like 128.112.136.10 (IP address)
 - central authority assigns numbers to networks
 - each host computer has unique address (32 bit integer in IPv4, 128 in IPv6), assigned locally according to what network it's on
- **Domain Name System** to convert names to addresses
- routing for finding paths from network to network
- protocols (rules) for packaging and transporting information
 - IP, or "Internet Protocol": a uniform transport mechanism at IP level, all information is in a common format
 - below IP, different hardware uses different protocols
 - above IP, higher-level protocols for handling web pages, mail, login ...

Internet (IP) addresses

- each network and each connected computer has an IP address
- IP address: a unique 32-bit number in IPv4 (IPv6 is 128 bits)
 - 1st part is network id, assigned centrally in blocks
 (Internet Assigned Numbers Authority -> Internet Service Provider -> you)
 - 2nd part is host id within that network assigned locally, often dynamically

net part	host on that net

- written in "dotted decimal" notation: each byte in decimal
 - e.g., 128.112.136.10 = www.princeton.edu

128 112	136	10
---------	-----	----

10000000	01110000	10001000	00001010
----------	----------	----------	----------

Domain names

- a hierarchical naming scheme
 - central authority (ICANN) manages top level of names
- top level domains include .com, .edu, .gov, .xx for country XX
 - and myriad newer domains like .biz, .info, .name, .xxx, ...
- each domain delegates responsibilities to levels below
 - for administration and translation into addresses
- each level is responsible for names within it
 - princeton.edu handles all of princeton
 - delegates cs.princeton.edu to a CS computer
 - CS department manages names within, e.g., rinse.cs.princeton.edu
- names impose logical structure, not physical or geographical

Domain name system (DNS)

DNS converts names to IP addresses and vice versa

- www.princeton.edu == 140.180.223.42
- carnegiehall.org == 45.60.73.146
- kernighan.com == 23.111.140.49

hierarchical searching for addresses

- central authority controls top level domain names (.com, etc.)
- delegates responsibilities for searching to levels below
- each level responsible for names and addresses within it princeton.edu handles address lookup for all of princeton delegates cs.princeton.edu to a CS machine
- top level domains handled by 13 root servers
- lookup for a name asks a local name server first
 - if not known locally, asks a server higher up, ..., to root server
 - recently-used names are cached to speed up access

Routing

- networks are connected by gateways or routers
- routing rules direct packets from gateway to gateway
 trying to get closer to ultimate destination
- routers exchange information frequently about routes
- bottom-up view:
 - gateways move packets from one network to another based on network id
 - if destination on the same network, use physical address
 - otherwise send to a gateway, which passes it to another network

top-down view:

- networks connected only through gateways
- core has a small set of gateways that exchange complete routing info about which nets it knows about and number of hops to reach them
- autonomous system: group of networks under single authority
- passes reachability info to core for use by other autonomous systems
- interior gateway protocols exchange routing info within a single AS
- ping: is there a path from here to there?
- traceroute: how do you get from here to there?