
Lecture 10: File systems, databases, cloud storage

• file: a sequence of bytes stored on a computer
– content is arbitrary (just bytes); any structure is imposed by the creator of

the file, not by the operating system
• file system: software that provides hierarchical storage and

organization of files, usually on a single computer (or nearby)
– a significant part of the operating system

• database: an integrated collection of logically related records
– data is organized and structured for efficient systematic access
– may be distributed across lots of machines & geographically dispersed

• database system: software that provides efficient access to
information in a database
– not usually part of the operating system

• cloud storage: the same things, but on someone else's
computer(s)
– accessed via the Internet

Midterm rules and advice

• open book: notes, textbook, old exams, etc., all ok
• no Internet access; no collaboration (!)
• 90 minutes in a single sitting

• return exam to CS 311 as soon as possible after you finish it
– drop in the box outside the door if I am not there

• by 5 PM Friday at the latest

• I'm trying to see if you understand; it's not meant to be tricky
• think straightforwardly; don't deconstruct; think about course topics
• if you're writing or computing a lot, you're on the wrong track
• know the powers of 2, powers of 10, hex digits, patterns thereof
• understand the Toy machine
• don't make careless arithmetic errors

File systems: managing stored information

• logical structure: users and programs see a hierarchy of
folders (== directories) and files

– a file is just a sequence of bytes
contents determined and interpreted by programs, not the operating system

– a folder is a special file that contains names of other folders and files
plus other information like size, time of change, permissions, etc.
contents are completely controlled by the operating system

– "root" folder ultimately leads to all others

• physical structure: many options with different properties

• the file system is the part of the operating system that converts
between these two views
– does whatever is necessary to maintain the file/folder illusion
– hides physical details so that programs don't depend on them
– presents a uniform interface to disparate physical media

How the file system converts logical to physical

• disk is physically organized into blocks of bytes
– each block is a fixed number of bytes, like 512 or 1024 or …)
– reading and writing always happens in blocks

• each file occupies an integral number of blocks
– files never share a block
– some space is wasted: a 1-byte file wastes all but 1 byte of the block

• if a file is bigger than one block, it occupies several blocks
– the blocks are not necessarily "adjacent"

• need a way to keep track of the blocks that make up the file
• usually done by a separate "file allocation table" that lists the

blocks that make up each file
– this table is stored on disk too so it persists when computer is turned off

Converting logical to physical, continued

• every block is part of some file, or reserved by the operating
system, or unused

• "file allocation table" keeps track of blocks
– by some kind of table or array that keeps track of related blocks

• also keeps track of unused blocks
– disk starts out with most blocks unused ("free")

some are reserved for file allocation table, etc.
– as a file grows, blocks are removed from the unused list and attached to

the list for the file
to grow a file, remove a block from the list of unused blocks
and add it to the blocks for the file

Converting logical to physical: folders / directories

• a folder / directory is a file
– stored in the same file system
– uses the same mechanisms

• but it contains information about other files and directories

• the directory entry for a file tells where to find the blocks
IT DOES NOT CONTAIN THE DATA ITSELF

• the directory entry also contains other info about the file
– name (e.g., midterm.doc)
– size in bytes, date/time of changes, access permissions
– whether it's an ordinary file or a directory

• the file system maintains the directory information
– very important to keep directory info consistent
– application programs can change it only indirectly / implicitly

File permissions

Network file systems

• the file system doesn't have to be local
– the data could be on some other computer

• network file systems access remote files via network
connections
– user programs access files and folders as if they are on the local computer
– network file system converts these into requests to ship information to or

from another computer across a network

• there has to be a program on the other end to respond to
requests
– "mapping a network drive" or "mounting your H: drive" sets up the

connections

• subsequent reads and writes go through the network instead of
the local disk

Cloud storage

• the file system doesn't have to be local
– the data could be on some other computer

• cloud storage systems access remote files via network
connections
– user programs access files and folders as if they are on the local computer
– file system converts these into requests to ship information to or from

another computer across a network

• there has to be a program on the other end to respond to
requests
– connecting to Google Drive or Dropbox or iCloud or ... sets up the

connections

• subsequent reads and writes go through the network instead of
the local disk

What happens when you say "Open"?

• search for file in sequence of directories as given by the
components of its name
– report and error if any component can't be found

• read blocks of file as needed
– using the location information in the file allocation table to find the blocks
– store some of them in RAM

What happens when you say "Save"?

• make sure there's enough space (enough unused blocks)
– don't want to run out while copying from RAM to disk

• create a temporary file with no bytes in it
• copy the bytes from RAM and/or existing file to temporary file:

while (there are still bytes to be copied) {
get a free block from the unused list
copy bytes to it until it's full or there are no more bytes to copy
link it in to the temporary file

}
• update the directory entry to point to the new file
• move the previous blocks (of old version) to the unused list

– or to recycle bin / trash

What happens when you remove a file?

• move the blocks of the file to the unused list
• set the directory entry so it doesn't refer to any block

– set it to zero, maybe

• recycle bin / trash
– recycle bin or trash is just another directory
– removing a file just puts the name, location info, etc., in that directory instead

• "emptying the trash" moves blocks into unused list
– removes entry from Recycle / Trash directory

• why "removing" a file isn't enough
– usually only changes a directory entry
– often recoverable by simple guesses about directory entry contents
– file contents are often still there even if directory entry is cleared

