
Lecture 8: Programming Languages

• it's hard to do the programming to get something done
• details are hard to get right, very complicated, finicky
• not enough skilled people to do what is needed
• therefore, enlist machines to do some of the work

– leads to programming languages

• it's hard to manage the resources of the computer
• hard to control sequences of operations
• in ancient times, high cost of having machine be idle
• therefore, enlist machines to do some of the work

– leads to operating systems

The important ideas

• programming languages evolve
• as we get more understanding
• and have more computing resources

– so the computer can do more of the work
• there is a lot of religious fervor about languages
• but all are equivalent in the Turing sense

• you can ignore syntax details completely
– but pay attention when we talk about Python

• you should understand the processes by which the programs
we write get to do actual computing

Evolution of programming languages
• 1940's: machine level

– use binary or equivalent notations for actual numeric values
• 1950's: "assembly language"

– names for instructions: ADD instead of 0110101, etc.
– names for locations: assembler keeps track of where things are in memory;

translates this more humane language into machine language
– this is the level used in the "toy" machine
– needs a total rewrite if it's moved to a different kind of CPU

loop get # read a number
ifzero done # no more input if number is zero
add sum # add in accumulated sum
store sum # store new value back in sum
goto loop # read another number

done load sum # print sum
print
stop

sum 0 # sum will be 0 when program starts
binary instrs

assembler

assembly lang
program

Evolution of programming languages, 1960's

• "high level" languages: Fortran, Cobol, Basic
– write in a more natural notation, e.g., mathematical formulas
– a program ("compiler", "translator") converts into assembler
– potential disadvantage: lower efficiency in use of machine
– enormous advantages:

accessible to much wider population of users
portable: same program can be translated for different machines
more efficient in programmer time

sum = 0
10 read(5,*) num

if (num .eq. 0) goto 20
sum = sum + num
goto 10

20 write(6,*) sum
stop
end

compiler

assembler

Fortran program

binary instrs

Evolution of programming languages, 1970's

• "system programming" languages: C
– efficient and expressive enough to take on any programming task

writing assemblers, compilers, operating systems
– a program ("compiler", "translator") converts into assembler
– enormous advantages:

accessible to much wider population of programmers
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <stdio.h>
main() {

int num, sum = 0;

while (scanf("%d", &num) != -1 && num != 0)
sum += num;

printf("%d\n", sum);
}

C compiler

assembler

C program

binary instrs

C code compiled to assembly language (ARM64, M1...)

#include <stdio.h>
main() {

int num, sum = 0;

while (scanf("%d", &num) != -1
&& num != 0)

sum = sum + num;
printf("%d\n", sum);

}

(You are not expected to
understand this!)

stp x29, x30, [sp, -32]!
add x29, sp, 0
str wzr, [x29, 28]
str wzr, [x29, 24]
b .L2

.L4:
ldr w0, [x29, 24]
ldr w1, [x29, 28]
add w0, w1, w0
str w0, [x29, 28]

.L2:
add x1, x29, 24
adrp x0, .LC0
add x0, x0, :lo12:.LC0
bl __isoc99_scanf
cmn w0, #1
beq .L3
ldr w0, [x29, 24]
cmp w0, 0
bne .L4

.L3:
adrp x0, .LC1
add x0, x0, :lo12:.LC1
ldr w1, [x29, 28]
bl printf
mov w0, 0
ldp x29, x30, [sp], 32
ret

Evolution of programming languages, 1980's

• "object-oriented" languages: C++
– better control of structure of really large programs

better internal checks, organization, safety
– a program ("compiler", "translator") converts into assembler or C
– enormous advantages:

portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <iostream>
main() {

int num, sum = 0;

while (cin >> num && num != 0)
sum += num;

cout << sum << endl;
} Bjarne Stroustrup

1950-

Java (1995)
import java.util.*;
class Addup {

public static void main (String [] args) {
Scanner keyboard = new Scanner(System.in);
int num, sum;
sum = 0;
num = keyboard.nextInt();
while (num != 0) {

sum = sum + num;
num = keyboard.nextInt();

}
System.out.println(sum);

}
}

James Gosling 1955-

JavaScript (1995)
var sum = 0; // javascript
var num = prompt("Enter new value, or 0 to end")
while (num != 0) {

sum = sum + parseInt(num)
num = prompt("Enter new value, or 0 to end")

}
alert("Sum = " + sum)

Brendan Eich
1961-

Python (1990)

sum = 0
num = input()
while num != '0':

sum = sum + int(num)
num = input()

print(sum)

Guido van Rossum
1956-

Programming languages in the 21st century?

• new(ish) general-purpose languages
– Go, Rust, Swift, Scala, Kotlin, Julia, ...

• ongoing refinements / evolution of existing languages
– C, C++, Fortran, Cobol, Javascript all have new standards in last few years

• specialized languages for specific application areas
– e.g., R for statistics

• old languages rarely die
– it costs too much to rewrite programs in a new language

Why so many programming languages?

• every language is a tradeoff among competing pressures
– reaction to perceived failings of others; personal taste

• notation is important
– "Language shapes the way we think and determines what we can think

about."
Benjamin Whorf

– the more natural and close to the problem domain, the easier it is to get
the machine to do what you want

• higher-level languages hide differences between machines and
between operating systems

• we can define idealized "machines" or capabilities and have a
program simulate them -- "virtual machines"
– programming languages are another example of Turing equivalence

