
Parallel Sequences

Credits:
Dan Grossman, U.Wash.

Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)

COS 326
Speaker: Andrew Appel

Princeton University

slides copyright 2018-20 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Parallel Programming

Programming with
shared mutable data
is very hard!

How can we leverage
• pure functions
• immutable data
• function

composition
to write large-scale
parallel programs?

Fujitsu	A64FX		(48	ARM	cores)

What if you had a really big job to do?
Example: Create an index of every web page on the planet.

– Google does that regularly!
– There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:
– how do we distribute work across all those computers?
– you definitely can't use shared-memory parallelism because the

computers don't share memory!
– when you use 1 computer, you just hope it doesn't fail. If it

does, you go to the store, buy a new one and restart the job.
– when you use 1000s of computers at a time, failures become the

norm. what to do when 1 of 1000 computers fail? Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers
from the complex details. Complex implementations solve the
problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter

COMPLEXITY OF
PARALLEL ALGORITHMS

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

dependence:
x = 1 + 2 happens before 3 + x

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

Execution of dependency diagrams: A processor can only begin executing the
computation associated with a block when the computations of all of its
predecessor blocks have been completed.

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 0

Visualizing Computational Costs

step 1:
execute first block x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1

Visualizing Computational Costs

step 2:
execute second block
because all of its
predecessors have
been completed

x = 1 + 2

3 + x

cost = 1

cost = 1

Cost so far: 1 + 1

Visualizing Computational Costs

let x = 1 + 2 in
3 + x

x = 1 + 2

3 + x

cost = 1

cost = 1

total cost
= 1 + 1
= 2

Visualizing Computational Costs

(1 + 2 || f 3)

parallel pair:
compute both left and right-hand sides independently
return pair of values
(easy to implement using futures)

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-B-C-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 1 processor. How much time does this computation take?
Schedule A-C-B-D: 1 + 1 + 7 + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7)

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Cost so far: 1 + max(1,7) + 1

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 2 processors. How much time does this computation take?
Total cost: 1 + max(1,7) + 1. We say the schedule we used was: A-CB-D

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have 3 processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Visualizing Computational Costs

(1 + 2 || f 3) 1 + 2 f 3

(,)

cost = 7cost = 1

cost = 1

cost = 1

Suppose we have infinite processors. How much time does this computation take?
Schedule A-BC-D: 1 + max(1,7) + 1 = 9

A

B C

D

Work and Span
Understanding the complexity of a parallel program is a little
more complex than a sequential program

– the number of processors has a significant effect

One way to approximate the cost is to consider a parallel
algorithm independently of the machine it runs on is to consider
two metrics:

– Work: The cost of executing a program with just 1 processor.
– Span: The cost of executing a program with an infinite number

of processors

Always good to minimize work
– Every instruction executed consumes energy
– Minimize span as a second consideration
– Communication costs are also crucial (we are ignoring them)

Parallelism
The parallelism of an algorithm is an estimate of the maximum
number of processors an algorithm can profit from.
• parallelism = work / span

If work = span then parallelism = 1.
• We can only use 1 processor
• It's a sequential algorithm

If span = ½ work then parallelism = 2
• We can use up to 2 processors

If work = 100, span = 1
• All operations are independent & can be executed in parallel
• We can use up to 100 processors

Related concept:

“speedup”
How much faster is

the n-processor
version

in practice, not just
in theory

Series-Parallel Graphs

Series-parallel graphs arise from execution of functional programs with
parallel pairs. Also known as well-structured, nested parallelism.

one operation two operations
in sequence

e1; e2

two operations
in parallel
(e1 || e2)

Parallel Pairs

f x g y

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)

Series-Parallel Graphs Compose

In general, a series-parallel graph has a source and a sink and is:
• a single node, or
• two series-parallel graphs in sequence, or
• two series-parallel graphs in parallel

one operation two graphs
in sequence

two graphs
in parallel

Not a Series-Parallel Graph

However:
The results about
greedy schedulers
(next few slides)
do apply to DAG
schedules as well
as series-parallel

schedules!

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

Work and Span of Acyclic Graphs
Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from
source to sink.

work = 10
span = 5

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Scheduling

B

E

C D

A

G

J

H I

F

Let's assume each node costs 1.

Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H H I
I E J
J F
F

Conclusion:
How you schedule
jobs can have an
impact on performance

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Greedy Schedulers
Greedy schedulers will schedule some task to a processor as
soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):
– T(p) < work/p + span

• won't be worse than dividing up the data perfectly between
processors, except for the last little bit, which causes you to add
the span on top of the perfect division

– T(p) >= max(work/p, span)
• can't do better than perfect division between processors (work/p)
• can't be faster than span

Greedy Schedulers
Properties (for p processors):

max(work/p, span) <= T(p) < work/p + span

Consequences:
– as span gets small relative to work/p

• work/p + span ==> work/p
• max(work/p, span) ==> work/p
• so T(p) ==> work/p greedy schedulers converge to the optimum!

– if span approaches the work
• work/p + span ==> span
• max(work/p, span) ==> span
• so T(p) ==> span greedy schedulers converge to the optimum!

And therefore
Even though greedy schedulers are simple to implement,

they can be effective in building a parallel programming system.

and

This supports the idea that work and span are useful ways to
reason about the cost of parallel programs.

PARALLEL SEQUENCES

Parallel Sequences
Parallel sequences

Operations:
– creation (called tabulate)
– indexing an element in constant span
– map
– scan -- like a fold: <u, u + e0, u + e0 + e1, ...> log n span!

Languages:
– Nesl [Blelloch]
– Data-parallel Haskell

< e0 , e1 , e2 , ... , en-1 >

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

length : 'a seq -> int

length <e0, e1, ..., e(n-1)> == n
work = O(1) span = O(1)

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =

Example Problems
Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* create n == <0, 1, ..., n-1> *)
let create n =
 tabulate (fun i -> i) n

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
 tabulate (fun i -> f (nth s i)) (length s)

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =

Example Problems
Write a function such that given a sequence <v0, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Operations:

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

A Parallel Sequence API

type 'a seq

tabulate : (int -> 'a) -> int -> 'a seq

length : 'a seq -> int

nth : 'a seq -> int -> 'a

append : 'a seq -> 'a seq -> 'a seq

split : 'a seq -> int -> 'a seq * 'a seq

O(N)

Work Span

O(1)

O(1)

O(N+M)

O(N)

O(1)

O(1)

O(1)

O(1)

O(1)

For efficient implementations, see this paper by Andrew Tao ’24:
https://icfp23.sigplan.org/details/ocaml-2023-papers/2/Parallel-Sequences-in-Multicore-OCaml

(can build this from tabulate, nth, length)

https://icfp23.sigplan.org/details/ocaml-2023-papers/2/Parallel-Sequences-in-Multicore-OCaml

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7sum:

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

Fold and Reduce
We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

Key to parallelization: Notice that because sum is an associative
operator, we do not have to add the elements strictly left-to-right:

let sum_all (l:int list) = reduce (+) 0 l

7 4 3 9 8

0 7 231411sum: 31

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

Side Note

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)

add on processor 1 add on processor 2

The key is associativity:

Commutativity allows us to reorder the elements:
v1 + v2 == v2 + v1

But we don't have to reorder elements to obtain a significant speedup;
we just have to reorder the execution of the operations.

Commutativity not needed!

Parallel Sum

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

Parallel Sum

2 7 4 3 9 8 2 1

+ + ++

31779

++

16 20

+

36

Parallel Sum

let rec psum (s : int seq) : int =
 match length s with
 0 -> 0
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (a1, a2) = both psum s1
 psum s2 in
 a1 + a2

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)

Parallel Reduce

7 4 3 9 8 2 12

9 8 2 17 4 32

2 19 84 372

2 7 4 3 9 8 2 1

op

op

op op op op

op

If op is associative and the base case has the properties:
 op base X == X op X base == X

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

Parallel Reduce

let sum s = reduce (+) 0 s

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

A little more general

let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =
 match length s with
 0 -> base
 | 1 -> inject (nth s 0)
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2

A little more general
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =
 match length s with
 0 -> base
 | 1 -> inject (nth s 0)
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2

let average s =
 let (count, total) =
 mapreduce (fun x -> (1,x))
 (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
 (0,0) s in
 if count = 0 then 0 else total / count

DON’T PARALLELIZE
AT TOO FINE A GRAIN

Parallel Reduce with Sequential Cut-off
When data is small, the overhead of parallelization isn't worth it.
Revert to the sequential version!

let SHORT = 1000

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 if length s < SHORT
 then sequential_reduce f base s
 else let (s1,s2) = split ((length s)/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

let sequential_reduce f base (s:'a seq) =
 let rec g i x =
 if i<0 then x else g (i-1) (f (nth a i) x)
 in g (length s – 1)

BALANCED PARENTHESES

The Balanced Parentheses Problem
Consider the problem of determining whether a sequence of
parentheses is balanced or not. For example:

– balanced: ()()(())
– not balanced: (
– not balanced:)(
– not balanced: ()))

We will try formulating a divide-and-conquer parallel algorithm
to solve this problem efficiently:

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren seq) : bool = ...

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1 0

Warning! This solution
does not generalize to a

parallel map/reduce!

First, a sequential approach

(())) () (

fold from left to right, keep track of
of unmatched left parens

0 1 2 1 0 -1!!

too many right parens
indicates no match

First, a sequential approach

(()

if you reach the end of
the end of the sequence,
you should have no
unmatched left parens

0 1 2 1

Easily Coded Using a Fold

let rec fold f b s =
let rec aux n accum =
if n >= length s then
accum

else
aux (n+1) (f (nth s n) accum)

in
aux 0 b

v1 v2

b f b v1 f (f b v1) v2fold:

Easily Coded Using a Fold

(* check to see if we have too many unmatched R parens

 so_far : number of unmatched parens so far
 or None if we have seen too many R parens

 *)

let check (p:paren) (so_far:int option) : int option =
 match (p, so_far) with
 (_, None) -> None
 | (L, Some c) -> Some (c+1)
 | (R, Some 0) -> None (* violation detected *)
 | (R, Some c) -> Some (c-1)

Easily Coded Using a Fold

let fold f base s = ...

let check so_far s = ...

let balanced (s: paren seq) : bool =
 match fold check (Some 0) s with
 Some 0 -> true
 | (None | Some n) -> false

That was easy enough. But the “check” function is not associative,
that means it can’t be used in a parallel “reduce”.

That’s what I was
warning about!

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if x ≥ k then))) ... j ...)))))) ... x – k ...))) (((... y ... (((

Parallel Version
Key insights

– if you find () in a sequence, you can delete it without changing
the balance

– if you have deleted all of the pairs (), you are left with:
•))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if x ≥ k then))) ... j ...)))))) ... x – k ...))) (((... y ... (((

– if x ≤ k then))) ... j ...))) (((... k – x ... ((((((... y ... (((

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((
 *)

let rec matcher s =
 match length s with
 0 -> (0, 0)
 | 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
 | n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left
 matcher right in
 if x > k
 then (j + (x – k), y)
 else (j, (k – x) + y)

))) ... j ...))) (((... k ... (((
))) ... x ...))) (((... y ... (((

Parallel Balance

(* *)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
 match matcher s with
 | (0, 0) -> true
 | (j,k) -> false

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((
 *)

let rec matcher s =
 match length s with
 0 -> (0, 0)
 | 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
 | n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left
 matcher right in
 if x > k
 then (j + (x – k), y)
 else (j, (k – x) + y)

This looks just like mapreduce!

Using a Parallel Fold

let inject paren =
 match paren with
 L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

Using a Parallel Fold

let inject paren =
 match paren with
 L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

Work: O(N)
Span: O(log N)

Using a Parallel Fold

let inject paren =
 match paren with
 L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

For correctness,
check the associativity

of combine

also check:
combine base (i,j) == (i, j)

Summary

Parallel complexity can be described in terms of work and span

Folds and reduces are easily coded as parallel divide-and-
conquer algorithms with O(n) work and O(log n) span

The map-reduce paradigm, inspired by functional programming,
is a winner when it comes to big-data processing (more about that
in the next lecture).

Sanity checks

Prove for yourself:

combine (combine (j,k) (x,y)) (a,b) = combine (j,k) (combine (x,y)(a,b))

combine (j,k) (0,0) = (j,k) combine (0,0) (j,k) = (j,k)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

base = (0,0)

check the associativity
of combine

also check:
combine base (i,j) == (i, j)

