Parallel Sequences

COS 326 Speaker: Andrew Appel Princeton University

Credits: Dan Grossman, U.Wash. Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)

> slides copyright 2018-20 David Walker and Andrew Appel permission granted to reuse these slides for non-commercial educational purposes

Parallel Programming

Fujitsu A64FX (48 ARM cores)

Programming with shared mutable data is very hard!

How can we leverage

- pure functions
- immutable data
- function composition
 to write large-scale parallel programs?

What if you had a really big job to do?

Example: Create an index of every web page on the planet.

- Google does that regularly!
- There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:

- how do we distribute work across all those computers?
- you definitely can't use shared-memory parallelism because the computers don't share memory!
- when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
- when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail? Start over?

Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences Example bulk operations: create, map, reduce, join, filter

COMPLEXITY OF PARALLEL ALGORITHMS

Execution of dependency diagrams: A processor can only begin executing the computation associated with a block when the computations of all of its predecessor blocks have been completed.

step 1: execute first block

Cost so far: 0

step 1: execute first block

Cost so far: 1

Cost so far: 1

step 2: execute second block because all of its predecessors have been completed

Cost so far: 1 + 1

(1 + 2 || f 3)

parallel pair: compute both left and right-hand sides independently return pair of values (easy to implement using futures)

Suppose we have 1 processor. How much time does this computation take?

Suppose we have 1 processor. How much time does this computation take? Schedule A-B-C-D: 1 + 1 + 7 + 1

Suppose we have 1 processor. How much time does this computation take? Schedule A-C-B-D: 1 + 1 + 7 + 1

Suppose we have 2 processors. How much time does this computation take?

Suppose we have 2 processors. How much time does this computation take? Cost so far: 1

Suppose we have 2 processors. How much time does this computation take? Cost so far: 1 + max(1,7)

Suppose we have 2 processors. How much time does this computation take? Cost so far: 1 + max(1,7) + 1

Suppose we have 2 processors. How much time does this computation take? Total cost: 1 + max(1,7) + 1. We say the *schedule* we used was: A-CB-D

Suppose we have **3** processors. How much time does this computation take?

Suppose we have 3 processors. How much time does this computation take? Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$

Suppose we have infinite processors. How much time does this computation take? Schedule A-BC-D: 1 + max(1,7) + 1 = 9

Work and Span

Understanding the complexity of a parallel program is a little more complex than a sequential program

the number of processors has a significant effect

One way to *approximate* the cost is to consider a parallel algorithm independently of the machine it runs on is to consider *two* metrics:

- Work: The cost of executing a program with just 1 processor.
- Span: The cost of executing a program with an infinite number of processors

Always good to minimize work

- Every instruction executed consumes energy
- Minimize span as a second consideration
- Communication costs are also crucial (we are ignoring them)

Parallelism

The parallelism of an algorithm is an estimate of the maximum number of processors an algorithm can profit from.

parallelism = work / span

If work = span then parallelism = 1.

- We can only use 1 processor
- It's a sequential algorithm

If span = $\frac{1}{2}$ work then parallelism = 2

• We can use up to 2 processors

If work = 100, span = 1

- All operations are independent & can be executed in parallel
- We can use up to 100 processors

Series-Parallel Graphs

Series-parallel graphs arise from execution of functional programs with parallel pairs. Also known as well-structured, nested parallelism.

Parallel Pairs

let both f x g y =
let ff = future f x in
let gv = g y in
(force ff, gv)

Series-Parallel Graphs Compose

In general, a series-parallel graph has a source and a sink and is:

- a single node, or
- two series-parallel graphs in sequence, or
- two series-parallel graphs in parallel

Not a Series-Parallel Graph

However: The results about greedy schedulers (next few slides) do apply to DAG schedules as well as series-parallel schedules!

Work and Span of Acyclic Graphs

Work and Span of Acyclic Graphs

Scheduling

Scheduling

Scheduling

Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):

- T(p) < work/p + span</p>
 - won't be worse than dividing up the data perfectly between processors, except for the last little bit, which causes you to add the span on top of the perfect division
- T(p) >= max(work/p, span)
 - can't do better than perfect division between processors (work/p)
 - can't be faster than span

Greedy Schedulers

Properties (for p processors):

max(work/p, span) <= T(p) < work/p + span

Consequences:

- as span gets small relative to work/p
 - work/p + span ==> work/p
 - max(work/p, span) ==> work/p
 - so T(p) ==> work/p greedy schedulers converge to the optimum!
- if span approaches the work
 - work/p + span ==> span
 - max(work/p, span) ==> span
 - so T(p) ==> span greedy schedulers converge to the optimum!

And therefore

Even though greedy schedulers are simple to implement,

they can be effective in building a parallel programming system.

and

This *supports* the idea that **work and span** are useful ways to reason about the cost of parallel programs.

PARALLEL SEQUENCES

Parallel Sequences

Parallel sequences

< e_0 , e_1 , e_2 , \ldots , $e_{n\text{-}1}$ >

Operations:

- creation (called tabulate)
- indexing an element in constant span
- map
- scan -- like a fold: $\langle u, u + e_0, u + e_0 + e_1, ... \rangle$ log n span!

Languages:

- Nesl [Blelloch]
- Data-parallel Haskell

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n ==
work =
$$O(n)$$
 span = $O(1)$

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n ==
work =
$$O(n)$$
 span = $O(1)$

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n ==
work =
$$O(n)$$
 span = $O(1)$

length : 'a seq -> int
length e(n-1) > == n
work =
$$O(1)$$
 span = $O(1)$

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

```
(* create n == <0, 1, ..., n-1> *)
let create n =
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function that creates the sequence <0, ..., n-1> with Span = O(1) and Work = O(n).

```
(* create n == <0, 1, ..., n-1> *)
let create n =
  tabulate (fun i -> i) n
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence <v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence <v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence <v0, ..., vn-1>, maps f over each element of the sequence with Span = O(1) and Work = O(n), returning the new sequence (if f is constant work)

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence $\langle v0, ..., vn-1 \rangle$, reverses the sequence. with Span = O(1) and Work = O(n)

			Work	Span
tabulate	f	n	n	1
nth i s			1	1
length s			1	1

Write a function such that given a sequence <v0, ..., vn-1>, reverses the sequence. with Span = O(1) and Work = O(n)

```
(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

Write a function such that given a sequence <v0, ..., vn-1>, reverses the sequence. with Span = O(1) and Work = O(n)

```
(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
   let n = length s in
   tabulate (fun i -> nth s (n-i-1)) n
```

	Work	Span
tabulate f n	n	1
nth i s	1	1
length s	1	1

A Parallel Sequence API

type 'a seq	<u>Work</u>	<u>Span</u>
tabulate : (int -> 'a) -> int -> 'a seq	O(N)	O(1)
length : 'a seq -> int	O(1)	O(1)
nth : 'a seq -> int -> 'a	O(1)	O(1)
append : 'a seq -> 'a seq -> 'a seq (can build this from tabulate, nth, length)	O(N+M)	O(1)
<pre>split : 'a seq -> int -> 'a seq * 'a seq</pre>	O(N)	O(1)

For efficient implementations, see this paper by Andrew Tao '24: <u>https://icfp23.sigplan.org/details/ocaml-2023-papers/2/Parallel-Sequences-in-Multicore-OCaml</u>

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

Key to parallelization: Notice that because sum is an *associative* operator, we do not have to add the elements strictly left-to-right:

$$(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)$$

add on processor 1 add on processor 2

Side Note

The key is *associativity*:

Commutativity not needed!

Commutativity allows us to reorder the elements:

$$v1 + v2 == v2 + v1$$

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.

Parallel Sum

Parallel Sum

Parallel Sum

```
let both f x g y =
  let ff = future f x in
  let gv = g y in
  (force ff, gv)
```

Parallel Reduce

If op is associative and the base case has the properties:

op base X == X op X base == X

then the parallel reduce is equivalent to the sequential left-to-right fold.
Parallel Reduce

Parallel Reduce

let sum
$$s = reduce (+) 0 s$$

A little more general

```
let rec mapreduce (inject: 'a -> 'b)
                    (combine: 'b -> 'b -> 'b)
                    (base: 'b)
                    (s:'a seq) =
  match length s with
    0 \rightarrow base
  | 1 -> inject (nth s 0)
  | n −>
      let (s1, s2) = split (n/2) s in
      let (n1, n2) = both
                       (mapreduce inject combine base) s1
                       (mapreduce inject combine base) s2 in
      combine n1 n2
```

A little more general

```
let rec mapreduce (inject: 'a \rightarrow 'b)
                      (combine: 'b \rightarrow 'b \rightarrow 'b)
                      (base: 'b)
                      (s:'a seq) =
  match length s with
    0 \rightarrow base
  | 1 -> inject (nth s 0)
  | n −>
       let (s1, s2) = split (n/2) s in
       let (n1, n2) = both
                          (mapreduce inject combine base) s1
                          (mapreduce inject combine base) s2 in
       combine n1 n2
```

DON'T PARALLELIZE AT TOO FINE A GRAIN

Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it. Revert to the sequential version!

```
let sequential_reduce f base (s:'a seq) =
   let rec g i x =
        if i<0 then x else g (i-1) (f (nth a i) x)
        in g (length s - 1)</pre>
```

```
let SHORT = 1000
```

BALANCED PARENTHESES

The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

- balanced: ()()(())
- not balanced: (
- not balanced:)(
- not balanced: ()))

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

```
type paren = L | R (* L(eft) or R(ight) paren *)
```

```
let balanced (ps : paren seq) : bool = ...
```


Warning! This solution does not generalize to a parallel map/reduce!

does not generalize to a

parallel map/reduce!

Easily Coded Using a Fold


```
let rec fold f b s =
  let rec aux n accum
    if n >= length s then
      accum
    else
      aux (n+1) (f (nth s n) accum)
  in
  aux 0 b
```

Easily Coded Using a Fold

Easily Coded Using a Fold

```
let fold f base s = ...
let check so_far s = ...
let balanced (s: paren seq) : bool =
  match fold check (Some 0) s with
     Some 0 -> true
   | (None | Some n) -> false
```


Key insights

 if you find () in a sequence, you can delete it without changing the balance

- Key insights
 - if you find () in a sequence, you can delete it without changing the balance
 - if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

$$-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((-.. y ... ((-.. y ... (((-.. y ... ((-.. ((-.. y ... ((-.. ((-.. y ... ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-.. ((-... ((-..$$

Key insights

- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy Combining two sequences where we have deleted all ():

-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

- if x ≥ k then))) ... j ...)))))) ... x - k ...))) (((... y ... (((

- if x ≤ k then))) ... j ...))) (((... k - x ... ((((((... y ... (((

Parallel Matcher

```
(* delete all () and return the (j, k) corresponding to:
    ))) ... j ... ))) ((( ... k ... (((
*)
let rec matcher s =
    match length s with
      0 \rightarrow (0, 0)
                                       ))) ... j ... ))) ((( ... k ... (((
     | 1 -> (match nth s 0 with)
                                          ))) ... x ... ))) ((( ... y ... (((
              | L -> (0, 1)
              | R -> (1, 0))
     | n −>
        let (left, right) = split (n/2) s in
        let ((j, k), (x, y)) = both matcher left
                                       matcher right in
        if x > k
        then (j + (x - k), y)
        else (j, (k - x) + y)
```

Parallel Balance

```
(* *)
let matcher s = ...
(* true if s is a sequence of balanced parens *)
let balanced s =
   match matcher s with
      | (0, 0) -> true
      | (j,k) -> false
```

Parallel Matcher

```
(* delete all () and return the (j, k) corresponding to:
    ))) ... j ... ))) ((( ... k ... (((
 *)
let rec matcher s =
                               This looks just like mapreduce!
    match length s with
      0 \rightarrow (0, 0)
    | 1 -> (match nth s 0 with
             | L -> (0, 1)
             | R -> (1, 0))
    | n −>
       let (left, right) = split (n/2) s in
       let ((j, k), (x, y)) = both matcher left
                                    matcher right in
       if x > k
       then (j + (x - k), y)
       else (j, (k - x) + y)
```

Using a Parallel Fold

```
let inject paren =
   match paren with
    L -> (0, 1)
    | R -> (1, 0)
let combine (j,k) (x,y) =
        if x > k then (j + (x - k), y)
```

```
else (j, (k - x) + y)
```

Using a Parallel Fold

Using a Parallel Fold

Parallel complexity can be described in terms of work and span

Folds and reduces are easily coded as parallel divide-andconquer algorithms with O(n) work and O(log n) span

The map-reduce paradigm, inspired by functional programming, is a winner when it comes to big-data processing (more about that in the next lecture).

Sanity checks

Prove for yourself:

combine (combine (j,k)(x,y)) (a,b) = combine <math>(j,k) (combine (x,y)(a,b))

combine (j,k) (0,0) = (j,k)

combine (0,0) (j,k) = (j,k)