
Modules
and Abstract Data Types

COS 326
Andrew Appel

Princeton University

slides copyright 2018,2022 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

motherhood and apple pie

Phrase
1. (US, symbolically) Wholesomeness and traditional (American) values.
2. (politics, US) Something that cannot be questioned because it appeals
to universally held beliefs or values.
 (from wictionary.org)

photo: pexels.com photo: en.wiktionary.org

https://en.wikipedia.org/wiki/United_States
https://en.wiktionary.org/wiki/wholesomeness
https://en.wiktionary.org/wiki/traditional
https://en.wiktionary.org/wiki/American
https://en.wiktionary.org/wiki/value
https://en.wiktionary.org/wiki/politics
https://en.wikipedia.org/wiki/United_States

modules, interfaces, data abstraction

Phrase
1. Wholesomeness and traditional (software engineering) values.
2. Something that cannot be questioned because it appeals to
universally held beliefs or values.

https://en.wiktionary.org/wiki/wholesomeness
https://en.wiktionary.org/wiki/traditional
https://en.wiktionary.org/wiki/value

The Reality of Development

4

We rarely know the right algorithms or the right data structures
when we start a design project.

– When implementing a search engine, what data structures and
algorithms should you use to build the index? To build the query
evaluator?

Reality is that we often have to go back and change our code,
once we’ve built a prototype.

– Often, we don’t even know what the user wants (requirements)
until they see a prototype.

– Often, we don’t know where the performance problems are
until we can run the software on realistic test cases.

– Sometimes we just want to change the design -- come up with
simpler algorithms, architecture later in the design process

Engineering for Change

5

Given that we know the software will change, how can we write
the code so that doing the changes will be easier?

Engineering for Change

6

Given that we know the software will change, how can we write
the code so that doing the changes will be easier?

The primary trick: use data and algorithm abstraction.

Engineering for Change

7

Given that we know the software will change, how can we write
the code so that doing the changes will be easier?

The primary trick: use data and algorithm abstraction.
– Don’t code in terms of concrete representations that the

language provides.
– Do code with high-level abstractions in mind that fit the

problem domain.
– Implement the abstractions using a well-defined interface.
– Swap in different implementations for the abstractions.
– Parallelize the development process.

Example

8

Goal: Implement a query engine.
Requirements: Need a scalable dictionary (a.k.a. index)

– maps words to set of URLs for the pages on which words appear.
– want the index so that we can efficiently satisfy queries

• e.g., all links to pages that contain “Dave” and “Jill”.

Wrong way to think about this:
– Aha! A list of pairs of a word and a list of URLs.
– We can look up “Dave” and “Jill” in the list to get back a list of

URLs.

Example

9

type query =
 Word of string
| And of query * query
| Or of query * query

type index = (string * (url list)) list

let rec eval(q:query)(h:index) : url list =
 match q with
 | Word x ->

 let (_,urls) = (try List.find (fun (w,urls) -> w=x) h
 with Not_found -> [])

 in urls
 | And (q1,q2) ->

 intersect_lists (eval q1 h) (eval q2 h)

 | Or (q1,q2) ->
 (eval q1 h) @ (eval q2 h)

Example

10

type query =
 Word of string
| And of query * query
| Or of query * query

type index = (string * (url list)) list

let rec eval(q:query)(h:index) : url list =
 match q with
 | Word x ->

 let (_,urls) = List.find (fun (w,urls) -> w = x) in
 urls

 | And (q1,q2) ->

 intersect_lists (eval q1 h) (eval q2 h)

 | Or (q1,q2) ->
 (eval q1 h) @ (eval q2 h)

intersect expects
to be passed
sorted lists.

Example

11

type query =
 Word of string
| And of query * query
| Or of query * query

type index = (string * (url list)) list

let rec eval(q:query)(h:index) : url list =
 match q with
 | Word x ->

 let (_,urls) = List.find (fun (w,urls) -> w = x) in
 urls

 | And (q1,q2) ->

 intersect_lists (eval q1 h) (eval q2 h)

 | Or (q1,q2) ->
 (eval q1 h) @ (eval q2 h)

intersect expects
to be passed
sorted lists.

Oops!

Example

12

type query =
 Word of string
| And of query * query
| Or of query * query

type index = string (url list) hashtable

let rec eval(q:query)(h:index) : url list =
 match q with
 | Word x ->

 let i = hash_string x in
 let l = Array.get h [i] in
 let urls = assoc_list_find l x in
 urls

 | And (q1,q2) -> ...

 | Or (q1,q2) -> ...

I find out there’s
a better hash-

table
implementation

A Better Way

13

type query =
 Word of string
| And of query * query
| Or of query * query

type index = string url_set dictionary

let rec eval(q:query)(d:index) : url_set =
 match q with
 | Word x -> Dict.lookup d x

 | And (q1,q2) -> Set.intersect (eval q1 h) (eval q2 h)

 | Or (q1,q2) -> Set.union (eval q1 h) (eval q2 h)

A Better Way

14

type query =
 Word of string
| And of query * query
| Or of query * query

type index = string url_set dictionary

let rec eval(q:query)(d:index) : url_set =
 match q with
 | Word x -> Dict.lookup d x

 | And (q1,q2) -> Set.intersect (eval q1 h) (eval q2 h)

 | Or (q1,q2) -> Set.union (eval q1 h) (eval q2 h)

The problem domain
talked about an
abstract type of

dictionaries and sets of
URLs.

A Better Way

15

type query =
 Word of string
| And of query * query
| Or of query * query

type index = string url_set dictionary ;;

let rec eval(q:query)(d:index) : url_set =
 match q with
 | Word x -> Dict.lookup d x

 | And (q1,q2) -> Set.intersect (eval q1 h) (eval q2 h)

 | Or (q1,q2) -> Set.union (eval q1 h) (eval q2 h)

The problem domain
talked about an
abstract type of

dictionaries and sets of
URLs.

Once we’ve written the
client, we know what

operations we need on
these abstract types.

A Better Way

16

type query =
 Word of string
| And of query * query
| Or of query * query

type index = string url_set dictionary ;;

let rec eval(q:query)(d:index) : url_set =
 match q with
 | Word x -> Dict.lookup d x

 | And (q1,q2) -> Set.intersect (eval q1 h) (eval q2 h)

 | Or (q1,q2) -> Set.union (eval q1 h) (eval q2 h)

The problem domain
talked about an
abstract type of

dictionaries and sets of
URLs.

Once we’ve written the
client, we know what

operations we need on
these abstract types.

So we can define an
interface, and send a pal

off to implement the
abstract types dictionary

and set.

Later on, when we find
out linked lists aren’t so

good for sets, we can
replace them with

balanced trees.

Abstract Data Types

Barbara Liskov
Assistant Professor, MIT

1973

Invented CLU language
that enforced data abstraction

Barbara Liskov
Professor, MIT

Turing Award 2008

“For contributions to practical and theoretical
foundations of programming language and

system design, especially related to
data abstraction, fault tolerance,

and distributed computing.”

Building Abstract Types in OCaml

18

OCaml has mechanisms for building new abstract data types:
– module type (or "signature"): an interface.

• specifies the abstract type(s) without specifying their
implementation

• specifies the set of operations on the abstract types
– module (or "structure"): an implementation.

• a collection of type and value definitions
• notion of an implementation matching or satisfying an interface

– gives rise to a notion of subtyping
– parameterized module (or "functor"):

• really, a function from modules to modules
• allows us to factor out and re-use modules

The Abstraction Barrier

19

Rule of thumb: Use the language to enforce the abstraction barrier.
– Reveal little information about how something is implemented
– Provide maximum flexibility for change moving forward.
– Murphy’s Law: What is not enforced, will be broken

But rules are meant to broken: Exercise judgement.
– may want to reveal more information for debugging purposes

• eg: conversion to string so you can print things out

ML gives you precise control over how much of the type is left abstract
– different amounts of information can be revealed in different contexts
– type checker helps you detect violations of the abstraction barrier

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

Each .ml file actually defines an ML module.

Convention: the file foo.ml or Foo.ml defines the module named Foo.

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () = ... sort_by_studio ...

let _ = main ()

main.ml

open gives
direct access to
module components

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

Recall assigment #2:

open Io
open Query

let main () =
 ... Query.sort_by_studio ...

main.ml

Can refer to module
components using dot notation

redacted

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

open Io
open Query

let main () =
 ... Query.sort_by_studio ...

main.ml

type movie

val sort_by_studio : movie list -> movie list
val sort_by_year : movie list -> movie list

query.mli

You can add interface files (.mli)
(also called signatures in ML)

These interfaces can hide
module components
or render types abstract.

Simple Modules

type movie = { ... }

let sort_by_studio = ...
let sort_by_year = ...

query.ml

open Io
open Query

let main () =
 ... Query.sort_by_studio ...

main.ml

type movie

val sort_by_studio : movie list -> movie list
val sort_by_year : movie list -> movie list

query.mli

If you have no signature file,
then the default signature
is used: all components
are fully visible to clients.

Simple Modules
Simple summary:

– file Name.ml is a structure implementing a module named Name
– file Name.mli is a signature for the module named Name

• if there is no file Name.mli, OCaml infers the default signature

Name.mli Name.ml ClientA.ml

...
Name.x
...

ClientB.ml

...
open Name
... x ...

Signature Structure

“module”

At first glance: OCaml modules = C modules?
C has:

– .h files (signatures) similar to .mli files?
– .c files (structures) similar to .ml files?

But ML also has:
– tighter control over type abstraction

• define abstract, transparent or translucent types in signatures
– i.e.: give none, all or some of the type information to clients

– more structure
• modules can be defined within modules
• i.e.: signatures and structures can be defined inside files

– more reuse
• multiple modules can satisfy the same interface
• the same module can satisfy multiple interfaces
• modules take other modules as arguments (functors)

– fancy features: dynamic, first class modules

Signature Definitions Inside Files

28

module type INT_STACK =
 sig
 type stack
 val empty : unit -> stack
 val push : int -> stack -> stack
 val is_empty : stack -> bool
 val pop : stack -> stack
 val top : stack -> int option
 end

Signature Definitions Inside Files

29

module type INT_STACK =
 sig
 type stack
 val empty : unit -> stack
 val push : int -> stack -> stack
 val is_empty : stack -> bool
 val pop : stack -> stack option
 val top : stack -> int option
 end

empty and push
are abstract

constructors:
functions that build
our abstract type.

Signature Definitions Inside Files

30

module type INT_STACK =
 sig
 type stack
 val empty : unit -> stack
 val push : int -> stack -> stack
 val is_empty : stack -> bool
 val pop : stack -> stack
 val top : stack -> int option
 end

is_empty is an
observer – useful
for determining

properties of the
ADT.

Signature Definitions Inside Files

module type INT_STACK =
 sig
 type stack
 val empty : unit -> stack
 val push : int -> stack -> stack
 val is_empty : stack -> bool
 val pop : stack -> stack
 val top : stack -> int option
 end

31

pop is sometimes
called a mutator

(though it doesn’t
really change the

input)

Signature Definitions Inside Files

32

module type INT_STACK =
 sig
 type stack
 val empty : unit -> stack
 val push : int -> stack -> stack
 val is_empty : stack -> bool
 val pop : stack -> stack
 val top : stack -> int option
 end

top is also an
observer, in this

functional setting
since it doesn’t

change the stack.

Put comments in your signature!

33

module type INT_STACK =
 sig
 type stack

 (* create an empty stack *)
 val empty : unit -> stack

 (* push an element on the top of the stack *)
 val push : int -> stack -> stack

 (* returns true iff the stack is empty *)
 val is_empty : stack -> bool

 (* pops top element off the stack;
 returns empty stack if the stack is empty *)

 val pop : stack -> stack

 (* returns the top element of the stack; returns
 None if the stack is empty *)

 val top : stack -> int option
 end

Signature Comments
Signature comments are for clients of the module

– explain what each function should do
• how it manipulates abstract values (stacks)

– not how it manipulates concrete values
– don’t reveal implementation details that should be hidden

behind the abstraction

Don’t copy signature comments into your structures
– your comments will get out of date in one place or the other
– an extension of the general rule: don’t copy code

Place implementation comments inside your structure
– comments about implementation invariants hidden from client
– comments about helper functions

Example Structure Inside a File

36

module ListIntStack : INT_STACK =
 struct
 type stack = int list
 let empty () : stack = []
 let push (i:int) (s:stack) : stack = i::s
 let is_empty (s:stack) =
 match s with
 | [] -> true
 | _::_ -> false
 let pop (s:stack) : stack =
 match s with
 | [] -> []
 | _::t -> t
 let top (s:stack) : int option =
 match s with
 | [] -> None
 | h::_ -> Some h
 end

module ListIntStack : INT_STACK =
 struct
 type stack = int list
 let empty () : stack = []
 let push (i:int) (s:stack) = i::s
 let is_empty (s:stack) =
 match s with
 | [] -> true
 | _::_ -> false
 let pop (s:stack) : stack =
 match s with
 | [] -> []
 | _::t -> t
 let top (s:stack) : int option =
 match s with
 | [] -> None
 | h::_ -> Some h
 end

Example Structure Inside a File

37

Inside the module,
we know the

concrete type used
to implement the

abstract type.

module ListIntStack : INT_STACK =
 struct
 type stack = int list
 let empty () : stack = []
 let push (i:int) (s:stack) = i::s
 let is_empty (s:stack) =
 match s with
 | [] -> true
 | _::_ -> false
 let pop (s:stack) : stack =
 match s with
 | [] -> []
 | _::t -> t
 let top (s:stack) : int option =
 match s with
 | [] -> None
 | h::_ -> Some h
 end

Example Structure Inside a File

38

But by giving the
module the INT_STACK
interface, which does
not reveal how stacks

are being represented,
we prevent code

outside the module
from knowing stacks

are lists.

An Example Client

39

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2

An Example Client

40

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2

s0 : ListIntStack.stack
s1 : ListIntStack.stack
s2 : ListIntStack.stack

An Example Client

41

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2
x : option int = Some 4

An Example Client

42

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2
x : option int = Some 4

let x = ListIntStack.top (ListIntStack.pop s2)
x : option int = Some 3

An Example Client

43

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2
x : option int = Some 4

let x = ListIntStack.top (ListIntStack.pop s2)
x : option int = Some 3

open ListIntStack

An Example Client

44

module ListIntStack : INT_STACK =
 struct
 …
 end

let s0 = ListIntStack.empty ()
let s1 = ListIntStack.push 3 s0
let s2 = ListIntStack.push 4 s1
let x = ListIntStack.top s2
x : option int = Some 4

let x = ListIntStack.top (ListIntStack.pop s2)
x : option int = Some 3

open ListIntStack
let x = top (pop (pop s2))
x : option int = None

An Example Client

45

module type INT_STACK =
 sig
 type stack
 val push : int -> stack -> stack
 …
 end
module ListIntStack : INT_STACK

let s2 = ListIntStack.push 4 s1;;
…

List.rev s2
Error: This expression has type stack but an
expression was expected of type ‘a list.

Notice that the
client is not

allowed to know
that the stack is a

list.

Example Structure

46

module ListIntStack (* : INT_STACK *) =
 struct

 type stack = int list
 let empty () : stack = []
 let push (i:int) (s:stack) = i::s
 let is_empty (s:stack) =
 match s with
 | [] -> true
 | _::_ -> false
 exception EmptyStack
 let pop (s:stack) =
 match s with
 | [] -> []
 | _::t -> t

 let top (s:stack) =
 match s with
 | [] -> None
 | h::_ -> Some h

 end

Note that when you
are debugging, you

may want to comment
out the signature

ascription so that you
can access the
contents of the

module.

The Client without the Signature

47

module ListIntStack (* : INT_STACK *) =
 struct
 …
 end

let s = ListIntStack.empty()
let s1 = ListIntStack.push 3 s
let s2 = ListIntStack.push 4 s1

…

let x = List.rev s2
x : int list = [3; 4]

If we don’t seal
the module with
a signature, the
client can know
that stacks are

lists.

Example Structure

48

module ListIntStack : INT_STACK =
 struct

 type stack = int list
 let empty () : stack = []
 let push (i:int) (s:stack) = i::s
 let is_empty (s:stack) =
 match s with
 | [] -> true
 | _::_ -> false
 exception EmptyStack
 let pop (s:stack) =
 match s with
 | [] -> []
 | _::t -> t

 let top (s:stack) =
 match s with
 | [] -> None
 | h::_ -> Some h

 end

When you put the
signature on here, you are
restricting client access to

the information in the
signature (which does not
reveal that stack = int list.)
So clients can only use the
stack operations on a stack
value (not list operations.)

Example Structure

49

module type INT_STACK =
 sig

 type stack
 ...

 val inspect : stack -> int list
 val run_unit_tests : unit -> unit

 end

module ListIntStack : INT_STACK =
 struct
 type stack = int list

 ...

 let inspect (s:stack) : int list = s
 let run_unit_tests () : unit = ...
 end

Another technique:

Add testing components to
your signature.

Or have 2 signatures, one
for testing and one for the

rest of the code)

DESIGN CHOICES
FOR CORNER CASES

Interface design

51

module type INT_STACK =
 sig
 type stack
 (* create an empty stack *)
 val empty : unit -> stack

 (* push an element on the top of the stack *)
 val push : int -> stack -> stack

 (* returns true iff the stack is empty *)
 val is_empty : stack -> bool

 (* pops top element off the stack;
 returns empty stack if the stack is empty *)

 val pop : stack -> stack

 (* returns the top element of the stack; returns
 None if the stack is empty *)

 val top : stack -> int option
 end

Is this a good
idea?

Design choices

52

sig
 type stack
 (* pops top element;

 returns empty if empty
*)

 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;
 returns option *)
 val pop:
 stack -> stack option
end

sig
 type stack
 exception EmptyStack
 (* pops top element;
 raises EmptyStack if empty

*)
 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;
 returns arbitrary stack
 if empty *)
 val pop : stack -> stack
end

For some functions,
there are some input values
outside the domain
of the function & the domain
is not easily described by
a simple type.

Say the function returns an arbitrary result on those inputs.

When proving things about the program, there’s an extra proof
obligation: Prove that the input is in the domain of the function.

Design choices

53

sig
 type stack
 (* pops top element;
 returns arbitrary stack
 if empty *)
 val pop : stack -> stack
end

For some functions,
there are some input values
outside the domain
of the function & the domain
is not easily described by
a simple type.

Say the function returns an arbitrary result on those inputs.

When proving things about the program, there’s an extra proof
obligation: Prove that the input is in the domain of the function.

But when a programmer forgets to do this proof (or makes a
mistake), such silent errors can be hard to track down.

Design choices

54

sig
 type stack
 (* pops top element;
 returns arbitrary stack
 if empty *)
 val pop : stack -> stack
end

Design choices

55

For some functions,
there are some
input values
outside the domain
of the function.

This is not completely crazy. One might still be able to guarantee
that the input is always in the domain of the function.

It’s what the C language does, for example.

sig
 type stack
 (* pops top element;
 crashes the program
 if empty *)
 val pop : stack -> stack
end

Design choices

56

For some functions,
there are some
input values
outside the domain
of the function.

This is not completely crazy. One might still be able to guarantee
that the input is always in the domain of the function.

It’s what the C language does, for example.

But it’s almost completely crazy. This is the biggest source of
security vulnerabilities ever. It’s why the hackers can drive your
car, steal your money, read your e-mails, …

sig
 type stack
 (* pops top element;
 crashes the program
 if empty *)
 val pop : stack -> stack
end

Design choices

57

sig
 type stack
 (* pops top element;

 returns empty if empty
*)

 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;

 returns arbitrary stack
if empty *)

 val pop : stack -> stack
end

It’s also reasonable to say the function returns a
specified, convenient, result on those inputs.
This is pretty much the same thing, in practice.

Consider: If supplying an empty stack to pop is probably a
mistake on the part of the caller, it is better to stop the program
right away (by raising an exception) than to let the error silently
slip by. In the long run, finding the real error is tougher.

Design choices

58

sig
 type stack
 exception EmptyStack
 (* pops top element;
 raises EmptyStack if empty

*)
 val pop : stack -> stack
end

For some functions,
there are some
input values
outside the domain
of the function.

That’s what exceptions are for!
Raise an exception for values
not in the domain.

Design choices

59

sig
 type stack
 (* pops top element;
 returns option *)
 val pop:
 stack -> stack option
end

Finally, you can just use option types in the obvious way.

Using an option has the advantage of forcing the caller to
consider what to do on the “error” condition every time the
function is called. They can’t forget to handle this situation.

Design choices

60

sig
 type stack
 (* pops top element;

 returns empty if empty
*)

 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;
 returns option *)
 val pop:
 stack -> stack option
end

sig
 type stack
 exception EmptyStack
 (* pops top element;
 raises EmptyStack if empty

*)
 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;

 returns arbitrary stack
if empty *)

 val pop : stack -> stack
end

All of these are reasonable
design choices!

Design choices

61

sig
 type stack
 (* pops top element;

 returns empty if empty
*)

 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;
 returns option *)
 val pop:
 stack -> stack option
end

sig
 type stack
 exception EmptyStack
 (* pops top element;
 raises EmptyStack if empty

*)
 val pop : stack -> stack
end

sig
 type stack
 (* pops top element;

 returns arbitrary stack
if empty *)

 val pop : stack -> stack
end

All of these are reasonable
design choices!

But use these two with extreme care

The bottom two are more common. Options are the “safest.”
They force consideration of the error condition every time.

ANOTHER EXAMPLE

Polymorphic Queues

63

module type QUEUE =
 sig
 type ‘a queue
 val empty : unit -> ‘a queue
 val enqueue : ‘a -> ‘a queue -> ‘a queue
 val is_empty : ‘a queue -> bool
 exception EmptyQueue
 val dequeue : ‘a queue -> ‘a queue
 val front : ‘a queue -> ‘a
 end

Polymorphic Queues

64

module type QUEUE =
 sig
 type ‘a queue
 val empty : unit -> ‘a queue
 val enqueue : ‘a -> ‘a queue -> ‘a queue
 val is_empty : ‘a queue -> bool
 exception EmptyQueue
 val dequeue : ‘a queue -> ‘a queue
 val front : ‘a queue -> ‘a
 end

These queues are
re-usable for

different element
types.

Here's an exception
that client code
might want to

catch

One Implementation

65

module AppendListQueue : QUEUE =
 struct
 type ‘a queue = ‘a list
 let empty() = []
 let enqueue(x:’a)(q:’a queue) : ‘a queue = q @ [x]
 let is_empty(q:’a queue) =
 match q with
 | [] -> true
 | _::_ -> false

 ...

end

One Implementation

66

module AppendListQueue : QUEUE =
 struct
 type ‘a queue = ‘a list
 let empty() = []
 let enqueue(x:’a)(q:’a queue) : ‘a queue = q @ [x]
 let is_empty(q:’a queue) = ...

 exception EmptyQueue
 let deq(q:’a queue) : (‘a * ‘a queue) =
 match q with
 | [] -> raise EmptyQueue
 | h::t -> (h,t)

 let dequeue(q:’a queue) : ‘a queue = snd (deq q)
 let front(q:’a queue) : ‘a = fst (deq q)
end

module AppendListQueue : QUEUE =
 struct
 type ‘a queue = ‘a list
 let empty() = []
 let enqueue(x:’a)(q:’a queue) : ‘a queue = q @ [x]
 let is_empty(q:’a queue) = ...

 exception EmptyQueue
 let deq(q:’a queue) : (‘a * ‘a queue) =
 match q with
 | [] -> raise EmptyQueue
 | h::t -> (h,t)

 let dequeue(q:’a queue) : ‘a queue = snd (deq q)
 let front(q:’a queue) : ‘a = fst (deq q)
end

One Implementation

67

Notice deq is a helper
function that doesn’t

show up in the
signature.

You can't use it
outside the module.

module AppendListQueue : QUEUE =
 struct
 type ‘a queue = ‘a list
 let empty() = []
 let enqueue(x:’a)(q:’a queue) : ‘a queue = q @ [x]
 let is_empty(q:’a queue) = ...

 exception EmptyQueue
 let deq(q:’a queue) : (‘a * ‘a queue) =
 match q with
 | [] -> raise EmptyQueue
 | h::t -> (h,t)

 let dequeue(q:’a queue) : ‘a queue = snd (deq q)
 let front(q:’a queue) : ‘a = fst (deq q)
end

One Implementation

68

Dequeue runs in
constant time

J

enqueue takes time
proportional to the
length of the queue

L

An Alternative Implementation

69

module DoubleListQueue : QUEUE =
 struct
 type ‘a queue = {front:’a list; rear:’a list}

 ...

end

In Pictures

let q0 = empty {front=[];rear=[]}
let q1 = enqueue 3 q0 {front=[];rear=[3]}
let q2 = enqueue 4 q1 {front=[];rear=[4;3]}
let q3 = enqueue 5 q2 {front=[];rear=[5;4;3]}
let q4 = dequeue q3 {front=[4;5];rear=[]}
let q5 = dequeue q4 {front=[5];rear=[]}
let q6 = enqueue 6 q5 {front=[5];rear=[6]}
let q7 = enqueue 7 q6 {front=[5];rear=[7;6]}

70

a, b, c, d, e {front=[a; b];rear=[e; d; c]}

abstraction implementation

An Alternative Implementation

71

module DoubleListQueue : QUEUE =
 struct
 type ‘a queue = {front:’a list;
 rear:’a list}

 let empty() = {front=[]; rear=[]}

 let enqueue x q = {front=q.front; rear=x::q.rear}

 let is_empty q =
 match q.front, q.rear with
 | [], [] -> true
 | _, _ -> false

 ...
end

enqueue runs in
constant time

J

An Alternative Implementation

72

module DoubleListQueue : QUEUE =
 struct
 type ‘a queue = {front:’a list;
 rear:’a list}

 exception EmptyQueue

 let deq (q:’a queue) : ‘a * ‘a queue =
 match q.front with
 | h::t -> (h, {front=t; rear=q.rear})
 | [] -> match List.rev q.rear with
 | h::t -> (h, {front=t; rear=[]})
 | [] -> raise EmptyQueue

 let dequeue (q:’a queue) : ‘a queue = snd(deq q)
 let front (q:’a queue) : ‘a = fst(deq q)
 end

dequeue runs in
amortized

constant time

J

How would we design an abstraction?

73

Think:
– what data do you want?

• define some types for your data
– what operations on that data do you want?

• define some types for your operations

Write some test cases:
– example data, operations

From this, we can derive a signature
– list the types
– list the operations with their types
– don’t forget to provide enough operations that you can debug!

Then we can build an implementation
– when prototyping, build the simplest thing you can.
– later, we can swap in a more efficient implementation.
– (assuming we respect the abstraction barrier.)

Common Interfaces

74

The stack and queue interfaces are quite similar:

module type STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : int -> ‘a stack -> ‘a stack
 val is_empty : ‘a stack -> bool
 exception EmptyStack
 val pop : ‘a stack -> ‘a stack
 val top : ‘a stack -> ‘a
 end

module type QUEUE =
 sig
 type ‘a queue
 val empty : unit -> ‘a queue
 val enqueue : ‘a -> ‘a queue -> ‘a queue
 val is_empty : ‘a queue -> bool
 exception EmptyQueue
 val dequeue : ‘a queue -> ‘a queue
 val front : ‘a queue -> ‘a
 end

It’s a good idea to factor out patterns

75

module type CONTAINER =
 sig
 type ‘a t
 val empty : unit -> ‘a t
 val insert : ‘a -> ‘a t -> ‘a t
 val is_empty : ‘a t -> bool
 exception Empty
 val remove : ‘a t -> ‘a t
 val first : ‘a t -> ‘a
 end

Stacks and Queues share common features.

Both can be considered “containers”

Create a reuseable container interface!

It’s a good idea to factor out patterns

module type CONTAINER = sig ... end

module Queue : CONTAINER = struct ... end
module Stack : CONTAINER = struct ... end

module DepthFirstSearch : SEARCHER =
 struct
 type to_do : Graph.node Stack.t

 end

module BreadthFirstSearch : SEARCHER =
 struct
 type to_do : Graph.node Queue.t

 end

Still repeated
code!

Breadth-first
and
depth-first
search code
is the same!

Just use
different
containers!

Need
parameterized
modules!

FUNCTORS

David MacQueen
Bell Laboratories 1983-2001

U. of Chicago 2001-2012

Designer of ML module system,
functors,

sharing constraints, etc.

Matrices

78

Suppose I ask you to write a generic package for matrices.
– e.g., matrix addition, matrix multiplication

The package should be parameterized by the element type.
– Matrix elements may be ints or floats or complex ...
– And the elements still have a collection of operations on them:

• addition, multiplication, zero element, etc.

What we'll see:
– RING: a signature for matrix elements
– MATRIX: a signature for operations on matrices
– DenseMatrix: a functor that will generate a MATRIX with a specific

RING as an element type

Ring Signature

79

module type RING =
 sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 end

module IntRing =
 struct
 type t = int
 let zero = 0
 let one = 1
 let add x y= x + y
 let mul x y = x * y
 end

Some Rings

80

module FloatRing =
 struct
 type t = float
 let zero = 0.0
 let one = 1.0
 let add = (+.)
 let mul = (*.)
 end

module BoolRing =
 struct
 type t = bool
 let zero = false
 let one = true
 let add x y= x || y
 let mul x y = x && y
 end

Matrix Signature

81

module type MATRIX =
 sig
 type elt
 type matrix
 val matrix_of_list : elt list list -> matrix
 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

The DenseMatrix Functor

82

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

The DenseMatrix Functor

83

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

Argument R must be
a RING

Result must be a
MATRIX

Specify
Result.elt = R.t

The DenseMatrix Functor

84

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

Use DenseMatrix like
it is a function from
modules to modules

The Type of IntMatrix

85

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct ... end

module IntMatrix = DenseMatrix(IntRing)

What is the signature
of IntMatrix?

The Type of IntMatrix

86

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct ... end

module IntMatrix = DenseMatrix(IntRing)

What is the signature
of IntMatrix?

It depends on both
the signatures of

DenseMatrix and of
it’s argument IntRing

The Type of IntMatrix

87

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct ... end

module IntMatrix = DenseMatrix(IntRing)

module type MATRIX =
 sig
 type elt
 type matrix
 val matrix_of_list : elt list list -> matrix
 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

+ type elt = R.t

The Type of IntMatrix

88

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct ... end

module IntMatrix = DenseMatrix(IntRing)

module type MATRIX =
 sig
 type elt
 type matrix
 val matrix_of_list : elt list list -> matrix
 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

+ type elt = R.t

module IntRing =
 struct
 type t = int
 let zero = 0
 ...
end

Recall:

The Type of IntMatrix

89

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct ... end

module IntMatrix = DenseMatrix(IntRing)

module type MATRIX =
 sig
 type elt
 type matrix
 val matrix_of_list : elt list list -> matrix
 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

+ type elt = R.t

=
module type MATRIX =
 sig
 type elt = int
 type matrix
 ...
end

module IntRing =
 struct
 type t = int
 ...
 end

The DenseMatrix Functor

90

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

redacted

The DenseMatrix Functor

91

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

module type MATRIX =
 sig
 type elt
 type matrix

 val matrix_of_list :
 elt list list -> matrix

 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

redacted

abstract =
unknown!

The DenseMatrix Functor

92

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

If the "with" clause is
redacted then

IntMatrix.elt is abstract
-- we could never build

a matrix because we
could never generate

an elt

module type MATRIX =
 sig
 type elt
 type matrix

 val matrix_of_list :
 elt list list -> matrix

 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

redacted

abstract =
unknown!

The DenseMatrix Functor

93

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

module type MATRIX =
 sig
 type elt = int
 type matrix

 val matrix_of_list :
 elt list list -> matrix

 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

sharing constraint

known to be
int when
R.t = int like
when R = IntRing

list of list of
ints

The DenseMatrix Functor

94

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct

 ...

end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

The "with" clause
makes IntMatrix.elt

equal to int -- we can
build a matrix from any

int list list

module type MATRIX =
 sig
 type elt = int
 type matrix

 val matrix_of_list :
 elt list list -> matrix

 val add : matrix -> matrix -> matrix
 val mul : matrix -> matrix -> matrix
 end

sharing constraint

known to be
int when
R.t = int like
when R = IntRing

list of list of
ints

Matrix Functor

95

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct
 type elt = ...
 type matrix = ...
 let matrix_of_list = ...
 let add m1 m2 = ...
 let mul m1 m2 = ...
end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

To define a functor, just write down
a module as its body.

That module has to match the
result signature (MATRIX).

This module may refer to the
functor arguments, like R.

Matrix Functor

96

module DenseMatrix (R:RING) : (MATRIX with type elt = R.t) =
struct
 type elt = R.t
 type matrix = (elt list) list
 let matrix_of_list rows = rows
 let add m1 m2 =
 List.map (fun (r1,r2) ->
 List.map (fun (e1,e2) -> R.add e1 e2))
 (List.combine r1 r2))

 (List.combine m1 m2)

 let mul m1 m2 = (* good exercise *)
end

module IntMatrix = DenseMatrix(IntRing)
module FloatMatrix = DenseMatrix(FloatRing)
module BoolMatrix = DenseMatrix(BoolRing)

Satisfies the sharing
constraint

Can refer to functor
argument

values or argument
types!

ANONYMOUS STRUCTURES

Another Example

98

module type UNSIGNED_BIGNUM =
sig
 type ubignum
 val fromInt : int -> ubignum
 val toInt : ubignum -> int
 val plus : ubignum -> ubignum -> ubignum
 val minus : ubignum -> ubignum -> ubignum
 val times : ubignum -> ubignum -> ubignum
 …

end

An Implementation

99

module My_UBignum_1000 : UNSIGNED_BIGNUM =
struct
 let base = 1000

 type ubignum = int list

 let toInt(b:ubignum):int = …

 let plus(b1:ubignum)(b2:ubignum):ubignum = …

 let minus(b1:ubignum)(b2:ubignum):ubignum = …

 let times(b1:ubignum)(b2:ubignum):ubignum = …
 …

end

What if we want
to change the
base? Binary?

Hex? 2^32? 2^64?

Another Functor Example

100

module type BASE =
sig
 val base : int
end

module UbignumGenerator(Base:BASE) : UNSIGNED_BIGNUM =
struct
 type ubignum = int list
 let toInt(b:ubignum):int =
 List.fold_left (fun a c -> c*Base.base + a) 0 b …
end

module Ubignum_10 =
 UbignumGenerator(struct let base = 10 end) ;;

module Ubignum_2 =
 UbignumGenerator(struct let base = 2 end) ;;

Anonymous
structures

SIGNATURE SUBTYPING

Subtyping

102

A module matches any interface as long as it provides at least
the definitions (of the right type) specified in the interface.

But as we saw earlier, the module can have more stuff.
– e.g., the deq function in the Queue modules

Basic principle of subtyping for modules:
– wherever you are expecting a module with signature S, you can

use a module with signature S’, as long as all of the stuff in S
appears in S’.

– That is, S’ is a bigger interface.

Groups versus Rings

103

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings

104

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

RING is a sub-type
of GROUP.

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings

105

There are more
modules matching

the GROUP
interface than the

RING one.

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 type t
 val zero : t
 val one : t
 val add : t -> t -> t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

Groups versus Rings

106

Any module
expecting a

GROUP can be
passed a RING.

Groups versus Rings

107

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 include GROUP
 val one : t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

The include primitive
is like cutting-and-

pasting the signature’s
content here.

Groups versus Rings

108

module type GROUP =
 sig
 type t
 val zero : t
 val add : t -> t -> t
 end
module type RING =
 sig
 include GROUP
 val one : t
 val mul : t -> t -> t
 end
module IntGroup : GROUP = IntRing
module FloatGroup : GROUP = FloatRing
module BoolGroup : GROUP = BoolRing

That ensures we
will be a sub-type

of the included
signature.

MODULE EVALUATION

Evaluating the contents of a module
A structure is a series of declarations

– How does one evaluate a type declaration? We’ll ignore it
(because it doesn’t do anything at run time).

– How does one evaluate a let declaration?

How does one evaluate an entire structure?
– evaluate each declaration in order from first to last

let x = e
evaluate the expression e
bind the value to x

Evaluating the contents of a module

let x = 326

let main () =
 Printf.printf “Hello COS %d\n” x

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

main.ml

Evaluating the contents of a module

main.ml

Step 1:
evaluate the 1st declaration

but the RHS (326)
is already a value so there’s
nothing to do except
remember that x is bound
to the integer 326

let x = 326

let main () =
 Printf.printf “Hello COS %d\n” x

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

Evaluating the contents of a module

main.ml
Step 2:
evaluate the 2nd declaration
this is slightly trickier:

let main () = ...

really declares a function.
It’s equivalent to:

let main = fun () -> ...

“fun () -> ...” is already
a value, like 326.
So there’s nothing to do again.

let x = 326

let main () =
 Printf.printf “Hello COS %d\n” x

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

Evaluating the contents of a module

main.ml
Step 3:
evaluate the 3rd declaration

let foo = ...

evaluation of this expression
has an effect – it prints
out “Byeee!\n” to the
terminal.

the resulting value is ()
which is bound to foo

let x = 326

let main () =
 Printf.printf “Hello COS %d\n” x

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

Evaluating the contents of a module

main.ml
Step 4:
evaluate the 4th declaration

let _ = ...

evaluation main ()
causes another effect.

“Hello ...” is printed

the resulting value is () again.
the “_” indicates we don’t
care to bind () to any variable

let x = 326

let main () =
 Printf.printf “Hello COS %d\n” x

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

A Variation

main.ml

This evaluates exactly
the same way

We just replaced

let main () = ...

with the equivalent

let main = fun () -> ...

let x = 326

let main =
 (fun () ->
 Printf.printf “Hello COS %d\n” x)

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

A Variation

main.ml
This rewrite does
something different.

On the 2nd step, it prints
because that’s what evaluating
this expression does:

 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

The result of the expression is:

fun () -> ()

which is bound to main.
This is a pretty silly function.

let x = 326

let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

let foo =
 Printf.printf “Byeee!\n”

let _ =
 main ()

A Variation
main.ml

module C326 =
struct
 let x = 326

 let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

 let foo = Printf.printf “Byeee!\n”

 let _ = main ()
end

let _ =
 Printf.printf "Done\n"

Now what happens?

A Variation
main.ml

module C326 =
struct
 let x = 326

 let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

 let foo = Printf.printf “Byeee!\n”

 let _ = main ()
end

let done =
 Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

A Variation
main.ml

module C326 =
struct
 let x = 326

 let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

 let foo = Printf.printf “Byeee!\n”

 let _ = main ()
end

let done =
 Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

Executing the module declaration
has the effect of executing
every declaration within it
in order.

Executing let done = ...
is as before

A Variation
main.ml

module C326 =
struct
 exception Unimplemented
 let x = raise Unimplemented

 let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

 let foo = Printf.printf “Byeee!\n”

 let _ = main ()
end

let done =
 Printf.printf "Done\n"

Now what happens?

A Variation
main.ml

module C326 =
struct
 exception Unimplemented
 let x = raise Unimplemented

 let main =
 Printf.printf “Hello COS %d\n” x;
 (fun () -> ())

 let foo = Printf.printf “Byeee!\n”

 let _ = main ()
end

let done =
 Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module C326 = ...
• let done = ...

We execute both of them in
order.

Executing the module declaration
has the effect of executing
every declaration within it
in order.

The first declaration within
it raises an exception which is
not caught! That is the only
result.

A Variation
main.ml

module type S =
sig
 type t = int
 val x : t
end

module F (M:S) : S =
struct
 let wow = Printf.printf “%d\n” M.x
 let t = M.t
 let x = M.x
end

let done = Printf.printf "Done\n"

Now what happens?

The entire file contains 2 decls:
• module type = ...
• module F (M:S) : S = ...
• let done = ...

A Variation
main.ml

module type S =
sig
 type t = int
 val x : t
end

module F (M:S) : S =
struct
 let wow = Printf.printf “%d\n” M.x
 let t = M.t
 let x = M.x
end

let done = Printf.printf "Done\n"

The signature declaration has no
(run-time) effect.

The functor declaration is
like declaring a function value.

The body of the functor is not
executed until it is applied.

The functor is not applied here
so M.x is not printed.

Only “Done\n” is printed.

A Variation
main.ml
module type S = sig ... end

module F (M:S) : S =
struct
 let wow = Printf.printf “%d\n” M.x
 let t = M.t
 let x = M.x
end

let module M1 = F (
 struct
 type t = int
 val x = 3
 end)

let done = Printf.printf "Done\n"

What happens now?

A Variation
main.ml
module type S = sig ... end

module F (M:S) : S =
struct
 let wow = Printf.printf “%d\n” M.x
 let t = M.t
 let x = M.x
end

let module M1 = F (
 struct
 type t = int
 val x = 3
 end)

let done = Printf.printf "Done\n"

What happens now?

When M1 is declared,
F is applied to an argument.

This creates a new structure and
its components are executed.

This has the effect of printing 3.

SUMMARY

Key Points

128

OCaml’s linguistic mechanisms include:
– signatures (interfaces)
– structures (implementations)
– functors (functions from modules to modules)

We can use the module system
– provides support for name-spaces
– hiding information (types, local value definitions)
– code reuse (via functors, reuseable interfaces, reuseable modules)

Information hiding allows design in terms of abstract types and algorithms.
– think “sets” not “lists” or “arrays” or “trees”
– think “document” not “strings”
– the less you reveal, the easier it is to replace an implementation
– use linguistic mechanisms to implement information hiding

• invariants written down as comments are easy to violate
• use the type checker to guarantee you have strong protections in place

Wrap up and Summary

129

It is often tempting to break the abstraction barrier.
– e.g., during development, you want to print out a set, so you

just call a convenient function you have lying around for
iterating over lists and printing them out.

But the barrier supports future change of implementations.
– e.g., moving from unsorted invariant to sorted invariant.
– or from lists to balanced trees.

Languages often allow information to leak through the barrier.
– “good” clients should not take advantage of this.
– but they always end up doing it.
– so you end up having to support these leaks when you upgrade,

else you’ll break the clients.

Wrap up and Summary

130

It is often tempting to break the abstraction barrier.
– e.g., during development, you want to print out a set, so you

just call a convenient function you have lying around for
iterating over lists and printing them out.

But the barrier supports future change of implementations.
– e.g., moving from unsorted invariant to sorted invariant.
– or from lists to balanced trees.

Languages often allow information to leak through the barrier.
– “good” clients should not take advantage of this.
– but they always end up doing it.
– so you end up having to support these leaks when you upgrade,

else you’ll break the clients.

