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Did I get it right? 2

“Did I get it right?”
– Most fundamental question you can ask about a computer program

Techniques for answering:

Testing
• create a set of sample inputs
• run the program on each input
• check the results
• how far does this get you?

• has anyone ever tested a 
homework and not received an A?

• why did that happen?

Proving
• consider all legal inputs
• show every input yields correct result
• how far does this get you?

• has anyone ever proven a 
homework correct and not received 
an A?

• why did that happen?

Grading
• hand in program to TA
• check to see if you got an A
• (does not apply after school is out)



Program proving 3

The basic, overall mechanics of proving functional programs correct is 
not particularly hard.  

– You are already doing it to some degree.  
– The real goal of this lecture to help you further organize your thoughts 

and to give you a more systematic means of understanding your 
programs.

– Of course, it can certainly be hard to prove some specific program has 
some specific property -- just like it can be hard to write a program 
that solves some hard problem

We are going to focus on proving the correctness of pure expressions
– their meaning is determined exclusively by the value they return
– don’t print,  don’t mutate global variables, don’t raise exceptions
– always terminate
– another word for “pure expression” is “valuable expression”
– but I want you to understand why the presence of possibly non-

terminating programs complicates rigorous reasoning about program 
correctness



“Expressions always terminate” 4

Two key concepts:
– A valuable expression

• an expression that always terminates (without side effects) and produces a 
value, provided we substitute values for free variables in the expression

– A total function with type t1 -> t2
• a function that terminates on all args : t1, producing a value of type t2
• the “opposite” of a total function is a partial function

– terminates on some (possibly all) input values

Many reasoning rules depend on expressions being valuable and hence 
the functions that are applied being total.

Unless told otherwise, you can assume all functions are total and 
expressions are valuable.  (Such facts can typically be proven by 
induction.)



Example Theorems

We'll prove properties of OCaml 
expressions, starting with equivalence 
properties:

Theorem:  easy 1 20 30 == 50

Theorem:  
   for all natural numbers n,
   exp n == 2^n

Theorem:
   for all lists xs, ys,
   length (cat xs ys) == length xs + length ys

let easy x y z = 
   x * (y + z)

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)

let rec length xs =
  match xs with
  | [] => 0
  | x::xs => 1 + length xs

let rec cat xs1 xs2 =
   match xs with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2
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Things to Watch For
The types are going to guide us in our theorem proving, just like they 
guided us in our programming
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Things to Watch For
The types are going to guide us in our theorem proving, just like they 
guided us in our programming

– when programming with lists, functions (often) have 2 cases:
• [ ]
• hd :: tl

– when proving with lists, proofs (often) have 2 cases:
• [ ]
• hd :: tl
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Things to Watch For
The types are going to guide us in our theorem proving, just like they 
guided us in our programming

– when programming with lists, functions (often) have 2 cases:
• [ ]
• hd :: tl

– when proving with lists, proofs (often) have 2 cases:
• [ ]
• hd :: tl

– when programming with natural numbers, functions have 2 cases:
• 0
• k + 1

– when proving with natural numbers, proofs have 2 cases:
• 0 
• k + 1

This is not a fluke!  Proof structure often related to program structure.
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Things to Watch For
More structure:

– when programming with lists:
• [ ] is often easy
• hd :: tl often requires a recursive function call on tl

– we assume our recursive function behaves correctly on tl
– when proving with lists:

• [ ] is often easy
• hd :: tl often requires appeal to an induction hypothesis for tl

– we assume our property of interest holds for tl
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Things to Watch For
More structure:

– when programming with lists:
• [ ] is often easy
• hd :: tl often requires a recursive function call on tl

– we assume our recursive function behaves correctly on tl
– when proving with lists:

• [ ] is often easy
• hd :: tl often requires appeal to an induction hypothesis for tl

– we assume our property of interest holds for tl
– when programming with natural numbers:

• 0 is often easy
• k + 1 often requires a recursive call on k

– when proving with natural numbers:
• 0 is often easy
• k + 1 often requires appeal to an induction hypothesis for k
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Key Ideas
Idea 1: The fundamental definition of when programs are equal.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop

we will use
what we learned
about OCaml
evaluation
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Key Ideas
Idea 1: The fundamental definition of when programs are equal.

Idea 2:  A fundamental proof principle.

two expressions are equal if and only if:
• they both evaluate to the same value, or
• they both raise the same exception, or
• they both infinite loop

if two expressions e1 and e2 are equal 
and we have a third complicated expression FOO (x)
then FOO(e1) is equal to FOO (e2)

this is the
principle of
"substitution of
equals for equals"

super useful since we can do a small, local proof 
and then use it in a big program:  modularity!
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The Workhorse:  Substitution of Equals for Equals

An example:  I know 2+2 == 4. 

I have a complicated expression: bar (foo ( ___ )) * 34 

Then I also know that  bar (foo (2+2)) * 34 == bar (foo (4)) * 34.

if two expressions e1 and e2 are equal 
and we have a third complicated expression FOO (x)
then FOO(e1) is equal to FOO (e2)

If expressions contain things like mutable references, this proof principle
breaks down.  That’s a big reason why I like functional programming and
a big reason we are working primarily with pure expressions.
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Important Properties of Expression Equality
Other important properties:

(reflexivity)  every expression e is equal to itself: e == e

(symmetry) if e1 == e2 then e2 == e1

(transitivity) if e1 == e2 and e2 == e3 then e1 == e3

(evaluation) if e1 --> e2 then e1 == e2.

(congruence, aka substitution of equals for equals) if two 
expressions are equal, you can substitute one for the other inside 
any other expression: 

– if e1 == e2 then e[e1/x] == e[e2/x]
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Function evaluation
If:                      f == fun x -> e
and if:               a  is a valuable expression
then:               f a == e[a/x]

we say, "by evaluation of f"
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EASY EXAMPLES
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given: let easy x y z = x * (y + z)

a function definition
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given:

Theorem:    easy 1 20 30 == 50 

let easy x y z = x * (y + z)
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given:

Theorem:    easy 1 20 30 == 50 

Proof:   
      easy 1 20 30 (left-hand side of equation)

let easy x y z = x * (y + z)
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given:

Theorem:    easy 1 20 30 == 50 

Proof:   
      easy 1 20 30 (left-hand side of equation)
==  1 * (20 + 30)           (by evaluating easy 1 step) actually 3 steps

let easy x y z = x * (y + z)
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given:

Theorem:    easy 1 20 30 == 50 

Proof:   
      easy 1 20 30 (left-hand side of equation)
==  1 * (20 + 30)           (by evaluating easy 1 step)
== 50   (by math)
QED.

let easy x y z = x * (y + z)
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Easy Examples
Most of our proofs will use what we know about the substitution 
model of evaluation.  Eg:

Given:

Theorem:    easy 1 20 30 == 50 

Proof:   
      easy 1 20 30 (left-hand side of equation)
==  1 * (20 + 30)           (by evaluating easy 1 step)
== 50   (by math)
QED.

let easy x y z = x * (y + z)

notice the
2-column
proof style

facts go on the left

justifications on the right
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
      easy 1 n m  (left-hand side of equation)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
      easy 1 n m  (left-hand side of equation)

let easy x y z = x * (y + z)

24

When asked to prove something “for all n : t”, one way to do that is 
to consider arbitrary elements n of that type t. In other words, all 
you get to assume is that you have an element of the given type.  
You don’t get to assume any extra properties of n.  



Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
      easy 1 n m  (left-hand side of equation)
==  1 * (n + m)              (by evaluating easy)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n and m, easy 1 n m == n + m 

Proof:   
      easy 1 n m  (left-hand side of equation)
==  1 * (n + m)              (by evaluating easy)
== n + m  (by math)
QED.

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
      easy k n m  (left-hand side of equation)

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
      easy k n m  (left-hand side of equation)
== k * (n + m)  (by evaluating easy)

let easy x y z = x * (y + z)

28



Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
      easy k n m  (left-hand side of equation)
== k * (n + m)  (by evaluating easy)
== k * (m + n)  (by math, subst of equals for equals)

let easy x y z = x * (y + z)

I'm not going to mention
this from now on
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
      easy k n m  (left-hand side of equation)
== k * (n + m)  (by evaluating easy)
== k * (m + n)  (by math)
== easy k m n  (by evaluating easy)
QED.

let easy x y z = x * (y + z)
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Easy Examples
We can use symbolic values in in our proofs too.  Eg:

Given:

Theorem:    for all integers n, m, k, easy k n m == easy k m n

Proof:   
      easy k n m  (left-hand side of equation)
== k * (n + m)  (eval)
== k * (m + n)  (by math)
== easy k m n  (eval)
QED.

let easy x y z = x * (y + z)

substitution/
evaluating/
“eval”
a definition

the reverse: 
“folding” a definition 
back up
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An Aside:  Symbolic Evaluation
One last thing: we sometimes find ourselves with a function, like 
easy, that has a symbolic argument like k+1 for some k and we would 
like to evaluate it in our proof. eg:

      easy x y (k+1)
== x * (y + (k+1))  (by evaluation of easy .... I hope)

However, that is not how OCaml evaluation works.  OCaml evaluates 
its arguments to a value first, and then calls the function.  

Don’t worry: if you know that the expression will evaluate to a value 
(and will not infinite-loop or raise an exception) then you can 
substitute the symbolic expression for the parameter of the function
To be rigorous, you should prove it will evaluate to a value, not just 
"know" ... but we won’t require you prove that in this class ...
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An Aside:  Symbolic Evaluation

An interesting example:

const ( exp )  == 7 (By evaluation of const?)

let const x = 7 

does this work for any expression?
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An Aside:  Symbolic Evaluation

An interesting example:

const ( n / 0 )  == 7 (By careless, wrong!  proof)

let const x = 7 
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An Aside:  Symbolic Evaluation

An interesting example:

const ( n / 0 )  == 7 (By careless, wrong! evaluation of const)

let const x = 7 

• n / 0 raises an exception
• so const (n / 0) raises an exception
• but 7 is just 7 and doesn’t raise an exception
• an expression that raises an exception is not equal to one that returns a value!
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An Aside:  Symbolic Evaluation

An interesting example:

const ( exp )  == 7 (By evaluation of const?)

let const x = 7 

does this work for any expression that doesn’t raise an exception?
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An Aside:  Symbolic Evaluation

An interesting example:

const ( loop 0 )  == 7     when let rec loop(x:int) = loop x      ?
       more careless, wrong evaluation ...

let const x = 7 

equations:

(1)   (fun x -> e1) e2   ==   e1[e2/x]
(2)   (f e2) == e1[e2/x]                          when let rec f x = e1

and when e2 evaluates to a value 
(not an exception or infinite loop)
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An Aside:  Symbolic Evaluation

An interesting example:

const ( f 0 )  == 7     when let f i = print_endline "hello"; 6 in
                                                       ?

       when let r = ref 0 in 
                                                       let f(i) = let s = !r in r := s+i; if s < 0 ... in
                                                       ?   

let const x = 7 

38

equations:

(1)   (fun x -> e1) e2   ==   e1[e2/x]
(2)   (f e2) == e1[e2/x]                          when let rec f x = e1

and when e2 evaluates to a value 
without side effects, raising an exception, or infinite loops



Summary so far:  Proof by simple calculation
Some proofs are very easy and can be done by:

– eval definitions (ie: using forwards evaluation)
– using lemmas or facts we already know (eg: math)
– folding definitions back up (ie: using reverse evaluation)

Eg:

Theorem:  easy a b c == easy a c b

Proof:

easy a b c

==  a * (b + c) (by def of easy)

==  a * (c + b) (by math)

==  easy a c b (by def of easy)

Definition:
let easy x y z = x * (y + z)

given this

we do this proof

39



INDUCTIVE PROOFS
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A problem 41

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 42

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 43

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
      exp 0

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 44

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
      exp 0
== match 0 with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 45

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n = 0:
      exp 0
== match 0 with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 1      (by evaluating match)
== 2^0     (by math)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 46

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 47

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 48

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 49

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== ??

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 50

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 51

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)
== 2 * (2 * exp ((k+1) - 1 - 1))   (by evaluating case)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



A problem 52

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * (match (k+1-1) with 0 -> 1 | n -> 2 * exp (n -1)) (by eval exp)
== 2 * (2 * exp ((k+1) - 1 - 1))   (by evaluating case)
== ... we aren’t making progress ... just unrolling the loop forever ...

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



Induction
When proving theorems about recursive functions, we usually 
need to use induction.

– In inductive proofs, in a case for object X, we assume that the 
theorem holds for all objects smaller than X
• this assumption is called the induction hypothesis (IH for short)

– Eg:  When proving a theorem about natural numbers by 
induction, and considering the case for natural number k+1, we 
get to assume our theorem is true for natural number k 
(because k is smaller than k+1)

– Eg:  When proving a theorem about lists by induction, and 
considering the case for a list x::xs, we get to assume our 
theorem is true for the list xs (which is a shorter list than x::xs)

53



Back to the Proof 54

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



Back to the Proof 55

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * exp (k)     (by math)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



Back to the Proof 56

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * exp (k)     (by math)
== 2 * 2^k     (by IH!)

Proof:  

Recall:  Every natural number n is
either 0 or it is k+1 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



Back to the Proof 57

Theorem:  For all natural numbers n, 

exp(n) == 2^n.

Case:  n == k+1:
      exp (k+1)
== match (k+1) with 0 -> 1 | n -> 2 * exp (n -1) (by eval exp) 
== 2 * exp (k+1 - 1)    (by evaluating case)
== 2 * exp (k)     (by math)
== 2 * 2^k     (by IH!)
== 2^(k+1)     (by math)
QED!

Proof:  

Recall:  Every natural number n is
either 0 or it is k+2 (where k is also a natural number).
Hence, we follow the structure of the data and do
our proof in two cases.

let rec exp n =
  match n with
    | 0 -> 1
    | n -> 2 * exp (n-1)



Another example

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.

Case:  n == 0:
  ...

Case:  n == k+1:
  ...

Theorem:  For all natural numbers n, 
even(2*n) == true.
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Another example

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
      even (2*0)  
==

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
      even (2*0)  
== even (0)      (by math)
==     

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

Case:  n == 0:
      even (2*0)  
== even (0)      (by math)
== match 0 of (0 -> true | 1 -> false | n -> even (n-2))  (by eval even)
== true       (by evaluation)

Theorem:  For all natural numbers n, 
even(2*n) == true.

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Case:  n == k+1:        IH: even(2*k)==true
      even (2*(k+1))  
==

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Case:  n == k+1:    IH: even(2*k)==true
      even (2*(k+1))  
== even (2*k+2)      (by math)
==

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Case:  n == k+1         IH: even(2*k)==true
      even (2*(k+1))  
== even (2*k+2)      (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== even ((2*k+2)-2)     (by evaluation)
== even (2*k)      (by math)

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Another example

Case:  n == k+1     IH: even(2*k)==true
      even (2*(k+1))  
== even (2*k+2)      (by math)
== match 2*k+2 with (0 -> true | 1 -> false | n -> even (n-2)) (by eval even)
== even ((2*k+2)-2)     (by evaluation)
== even (2*k)      (by math)
== true       (by IH)
QED.

Theorem:  For all natural numbers n, 
even(2*n) == true.

Recall:  Every natural number n is
either 0 or k+1, where k is also a 
natural number.  

let rec even n =
  match n with
    | 0 -> true
    | 1 -> false
    | n -> even (n-2)
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Template for Inductive Proofs on Natural Numbers

Proof:  By induction on natural numbers n.

Case:  n == 0:
  ...

Case:  n == k+1:    IH: …(k)…
  ...

Theorem:  For all natural numbers n, property of n.

justifications to use:
• simple math
• eval, reverse eval, "by def"
• IH

proof methodology.
write this down.

cases must
cover all 
natural
numbers
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Template for Inductive Proofs on Natural Numbers

Proof:  By induction on natural numbers n.

Case:  n == 0:
  ...

Case:  n == k+1:   IH: …(k)…
  ...

Theorem:  For all natural numbers n, property of n.

cases must
cover all 
natural
numbers

Note there are other ways to cover all natural numbers:
• eg:  case for 0, case for 1, case for k+2
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PROOFS ABOUT
LIST-PROCESSING FUNCTIONS
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A Couple of Useful Functions

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys

Proof strategy:
• Proof by induction on the list xs

– recall, a list may be of these two things:
• []   (the empty list)
• hd::tl  (a non-empty list, where tl is shorter)

– a proof must cover both cases: [ ] and hd :: tl
– in the second case,  you will often use the induction hypothesis 

on the smaller list tl
– otherwise as before:

• use folding/eval of OCaml definitions
• use your knowledge of OCaml evaluation
• use lemmas/properties you know of basic operations like :: and +
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = [ ]:

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = [ ]:
    length (cat [ ] ys)  (LHS of theorem)

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = [ ]:
    length (cat [ ] ys)  (LHS of theorem)
 = length ys   (evaluate cat)

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = [ ]:
    length (cat [ ] ys)  (LHS of theorem)
 = length ys   (evaluate cat)
 = 0 + (length ys)   (arithmetic)

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = [ ]:
    length (cat [ ] ys)  (LHS of theorem)
 = length ys   (evaluate cat)
 = 0 + (length ys)   (arithmetic)
 = (length [ ]) + (length ys)  (eval length)

case done!

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

      length (cat (hd::tl) ys)  (LHS of theorem)
==

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

      length (cat (hd::tl) ys)  (LHS of theorem)
== length (hd :: (cat tl ys))       (evaluate cat, take 2nd branch)
==

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

      length (cat (hd::tl) ys)  (LHS of theorem)
== length (hd :: (cat tl ys))       (evaluate cat, take 2nd branch)
== 1 + length (cat tl ys)  (evaluate length, take 2nd branch)
== 

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs

80



Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

      length (cat (hd::tl) ys)  (LHS of theorem)
== length (hd :: (cat tl ys))       (evaluate cat, take 2nd branch)
== 1 + length (cat tl ys)  (evaluate length, take 2nd branch)
== 1 + (length tl + length ys) (by IH)
== 

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys
Proof:  By induction on xs.
  
case xs = hd::tl
    IH: length (cat tl ys) = length tl + length ys

      length (cat (hd::tl) ys)  (LHS of theorem)
== length (hd :: (cat tl ys))       (evaluate cat, take 2nd branch)
== 1 + length (cat tl ys)  (evaluate length, take 2nd branch)
== 1 + (length tl + length ys) (by IH)
== length (hd::tl) + length ys (reparenthesizing and evaling length in reverse
    we have RHS with hd::tl for xs)

case done! let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs
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Proofs About Lists
Theorem:  For all lists xs and ys, 
  length(cat xs ys) = length xs + length ys

Proof strategy:
• Proof by induction on the list xs? why not on the list ys?

– answering that question, may be the hardest part of the proof!
– it tells you how to split up your cases
– sometimes you just need to do some trial and error

let rec cat xs1 xs2 =
   match xs1 with
   | [] -> xs2
   | hd::tl -> hd :: cat tl xs2

let rec length xs =
  match xs with
  | [] -> 0
  | x::xs -> 1 + length xs

a clue:
pattern matching
on first argument.
In the theorem:
cat xs ys
Hence induction
on xs. Case split
the same way
as the program
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)

  

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = [ ]:

      add_all (add_all [] a) b  (LHS of theorem)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = [ ]:

      add_all (add_all [] a) b  (LHS of theorem)
== add_all [ ] b   (by evaluation of add_all)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = [ ]:

      add_all (add_all [] a) b  (LHS of theorem)
== add_all [ ] b   (by evaluation of add_all)
== [ ]                (by evaluation of add_all)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = [ ]:

      add_all (add_all [] a) b  (LHS of theorem)
== add_all [ ] b   (by evaluation of add_all)
== [ ]                (by evaluation of add_all)
== add_all [ ] (a + b)  (by evaluation of add_all)

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
         IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
         IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
== add_all ((hd+a) :: add_all tl a) b  (by eval inner add_all)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
         IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
== add_all ((hd+a) :: add_all tl a) b  (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b)           (by eval outer add_all)
==

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
         IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
== add_all ((hd+a) :: add_all tl a) b  (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b)           (by eval outer add_all)
== (hd+a+b) :: add_all tl (a+b)  (by IH)

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
         IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
== add_all ((hd+a) :: add_all tl a) b  (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b)           (by eval outer add_all)
== (hd+a+b) :: add_all tl (a+b)  (by IH)
== (hd+(a+b)) :: add_all tl (a+b)  (associativity of + )

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Another List example
Theorem:  For all lists xs, 
                       add_all (add_all xs a) b == add_all xs (a+b)
Proof:  By induction on xs.
  
case xs = hd :: tl:
        IH:  add_all (add_all tl a) b == add_all tl (a+b)
      add_all (add_all (hd :: tl) a) b  (LHS of theorem)
== add_all ((hd+a) :: add_all tl a) b  (by eval inner add_all)
== (hd+a+b) :: (add_all (add_all tl a) b)           (by eval outer add_all)
== (hd+a+b) :: add_all tl (a+b)  (by IH)
== (hd+(a+b)) :: add_all tl (a+b)  (associativity of + )
== add_all (hd::tl) (a+b)   (by (reverse) eval of add_all)

let rec add_all xs c =
  match xs with
  | [ ] -> [ ]
  | hd::tl -> (hd+c)::add_all tl c
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Template for Inductive Proofs on Lists

Proof:  By induction on lists xs.

Theorem:  For all lists xs, property of xs.

cases must
cover all 
lists

Note there are other ways to cover all lists:
• eg:  case for [], case for x1::[], case for x1::x2::tl 

Case:  xs == [ ]:
  ...

Case:  xs == hd :: tl:
      IH:  …(tl)…
  ...
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Template for Inductive Proofs on any datatype

Proof:  By induction on the constructors of ty.

Theorem:  For all ty  x, property of x.

cases must cover all  the constructors of the datatype

Case:  x == A(…):
  ...   IH ?  [zero or more induction hyps]
Case:  x == B(…):
  ...   IH ?     [zero or more induction hyps]
Case:  x == C(…):
  ...   IH ?    [zero or more induction hyps]
Case:  x == D:
  ...

type ty = A of … | B of … | C of … | D  ;;
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SUMMARY
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Summary

Proofs about programs are structured similarly to the programs:
– types tell you the kinds of values your proofs/programs operate over
– types suggest how to break down proofs/programs in to cases
– when programs that use recursion on smaller values, their proofs 

appeal to the inductive hypothesis on smaller values

Key proof ideas:
– two expressions that evaluate to the same value are equal
– substitute equals for equals
– use calculation (evaluation) to reason about simple equalities
– use well-established axioms about primitives (+, -, %, etc)
– use proof by induction to prove correctness of recursive functions
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