An OCaml definition of OCaml evaluation, or, Implementing OCaml in OCaml (Part II) COS 326
 Andrew Appel Princeton University

slides copyright 2018 David Walker and Andrew Appel permission granted to reuse these slides for non-commercial educational purposes

Last Time

Implementing an interpreter:

Components:

- Evaluator for primitive operations
- Substitution
- Recursive evaluation function for expressions

Last Time: Implementing Interpreters

Represent

```
type var = string
type op = Plus | Minus
type exp =
    | Int_e of int
    | Op_e of exp * op * exp
    | Var_e of var
    | Let_e of var * exp * exp
```

exception UnboundVariable of variable

Evaluate
expressions
let rec eval (e:exp) : exp = match e with
| Int_e i $->$ Int_e i
| Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
| Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
| Var_e x-> raise (UnboundVariable x)

A MATHEMATICAL DEFINITION* OF OCAML EVALUATION

From Code to Abstract Specification

OCaml code can give a language semantics

- advantage: it can be executed, so we can try it out
- advantage: it is amazingly concise
- especially compared to what you would have written in Java
- disadvantage: it is a little ugly to operate over concrete ML datatypes like "Op_e(e1,Plus,e2)" as opposed to "e1 + e2"
- big disadvantage: When you use language X to define the semantics of language Y , you only get a precise definition of Y if you already fully understand the semantics of X. So, when you use OCaml to define the semantics of OCaml, you get a precise definition of OCaml only if you already know the precise definition of OCaml.

From Code to Abstract Specification

PL researchers have developed their own standard notation for writing down how programs execute

- it has a mathematical "feel" that makes PL researchers feel special and gives us goosebumps inside
- it operates over abstract expression syntax like "e1 + e2"
- it is useful to know this notation if you want to read specifications of programming language semantics
- e.g.: Standard ML (of which OCaml is a descendent) has a formal definition given in this notation (and C, and Java; but not OCaml...)
- e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)
- Programming languages that have been formally defined this way:
- Java, Javascript, Rust, C, ML, . . .

Goal

Our goal is to explain how an expression e evaluates to a value v.

In other words, we want to define a mathematical relation between pairs of expressions and values.

Formal Inference Rules

We define the "evaluates to" relation using a set of (inductive) rules that allow us to prove that a particular (expression, value) pair is part of the relation.

A rule looks like this:

You read a rule like this:

- "if premise 1 can be proven and premise 2 can be proven and ... and premise n can be proven then conclusion can be proven"

Some rules have no premises

- this means their conclusions are always true
- we call such rules "axioms"

An example rule

As a rule:
$\frac{\mathrm{e} 1 \Downarrow \mathrm{v} 1 \quad \mathrm{e} 2 \Downarrow \mathrm{v} 2 \quad \text { eval_op }(\mathrm{v} 1, \mathrm{op}, \mathrm{v} 2)==\mathrm{v}^{\prime}}{\mathrm{e} 1 \text { op e2 } \Downarrow \mathrm{v}^{\prime}}$

In English:

```
"If e1 evaluates to v1
    and e2 evaluates to v2
    and eval_op (v1, op, v2) is equal to v'
    then
    e1 op e2 evaluates to v'
```

In code:
let rec eval (e:exp) : exp = match e with

$$
\begin{aligned}
& \mid \text { Op_e(e1,op,e2) }-> \text { let } v 1 \\
& \text { let } v 2=\text { eval e1 in } \\
& \text { let } v^{\prime}
\end{aligned}=\text { eval e2 in } \quad \text { op v1 op v2 in }
$$

An example rule

As a rule:
asserts i is

$$
i \in Z \longleftarrow \text { an integer }
$$

In English:
"If the expression is an integer value, it evaluates to itself."

In code:

```
let rec eval (e:exp) : exp =
    match e with
    | Int_e i -> Int_e i
```


An example rule concerning evaluation

As a rule:

$$
\frac{\mathrm{e} 1 \Downarrow v 1 \quad \mathrm{e} 2[\mathrm{v} 1 / \mathrm{x}] \Downarrow \mathrm{v} 2}{\text { let } x=\mathrm{e} 1 \mathrm{in} \mathrm{e2} \Downarrow v 2}
$$

In English:

> "If e1 evaluates to v1 (which is a value) and e2 with v1 substituted for x evaluates to v2 then let $x=e 1$ in e2 evaluates to v2."

In code:

```
let rec eval (e:exp) : exp =
    match e with
    | Let_e(x,e1,e2) -> let v1 = eval e1 in
        eval (substitute v1 x e2)
```


An example rule concerning evaluation

As a rule:

In English:
$\lambda x . e \Downarrow \lambda x . e$
typical "lambda" notation for a function with
argument x, body e
"A function value evaluates to itself."

In code:

```
let rec eval (e:exp) : exp =
    match e with
    | Fun_e (x,e) -> Fun_e (x,e)
```


An example rule concerning evaluation

As a rule:

$$
\begin{array}{lll}
\mathrm{e} 1 \Downarrow \lambda \text { x.e } \quad \mathrm{e} 2 \Downarrow v 2 & \mathrm{e}[\mathrm{v} 2 / \mathrm{x}] \Downarrow v \\
\mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{v}
\end{array}
$$

In English:

> "if e1 evaluates to a function with argument x and body e and e2 evaluates to a value v2 and e with v2 substituted for x evaluates to v then e1 applied to e2 evaluates to v "

In code:

```
let rec eval (e:exp) : exp =
    match e with
| FunCall_e (e1,e2) ->
    (match eval e1 with
    | Fun_e (x,e) -> eval (substitute (eval e2) x e)
```


An example rule concerning evaluation

As a rule:

$$
\frac{\mathrm{e} 1 \Downarrow \operatorname{rec} f x=e \quad e 2 \Downarrow v \quad e[(r e c f x=e) / f][v / x] \Downarrow v 2}{e 1 e 2 \Downarrow v 2}
$$

In English:
"uggh"

In code:

```
let rec eval (e:exp) : exp =
    match e with
```

```
    | (Rec_e (f,x,e)) as f_val ->
        let v = eval e2 in
        eval (substitute f_val f (substitute v x e))
```


Comparison: Code vs. Rules

complete eval code:
complete set of rules:

```
let rec eval (e:exp) : exp =
    match e with
    | Int_e i -> Int_e i
    | Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
    | Var_e x -> raise (UnboundVariable x)
    | Fun_e (x,e) -> Fun_e (x,e)
    | FunCall_e (e1,e2) ->
            (match eval e1
            | Fun_e (x,e) -> eval (Let_e (x,e2,e))
            | _ -> raise TypeError)
    | LetRec_e (x,e1,e2) ->
        (Rec_e (f,x,e)) as f_val ->
            let v = eval e2 in
            substitute f_val f (substitute v x e)
```


$\mathrm{e} 1 \Downarrow \operatorname{rec} f x=e$	$\mathrm{e} 2 \Downarrow v 2 \quad \mathrm{e}[\mathrm{rec} \mathrm{f} x=\mathrm{e} / \mathrm{f}][\mathrm{v} 2 / \mathrm{x}] \Downarrow v 3$
$\mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{v} 3$	

Almost isomorphic:

- one rule per pattern-matching clause
- recursive call to eval whenever there is a \Downarrow premise in a rule
- what's the main difference?

Comparison: Code vs. Rules

complete eval code:

```
let rec eval (e:exp) : exp =
    match e with
        | Int_e i -> Int_e i
    | Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
    | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
    | Var_e x -> raise (UnboundVariable x)
    | Fun_e (x,e) -> Fun_e (x,e)
    | FunCall_e (e1,e2) ->
        (match eval el
        | Fun_e (x,e) -> eval (Let_e (x,e2,e))
            } --> raise TypeError)
    | LetRec_e (x,e1,e2) ->
    (Rec_e (f,x,e)) as f_val ->
        let v = eval e2 in
        eval (substitute f_val f (substitute v x e))
```

complete set of rules:
e1 $\Downarrow v 1 \quad e 2 \Downarrow v 2 \quad$ eval_op $(v 1, o p, v 2)==v$
$e 1$ op e2 $\Downarrow v$
$\frac{e 1 \Downarrow v 1 \quad e 2[v 1 / x] \Downarrow v 2}{\text { let } x=e 1 \text { in } e 2 \Downarrow v 2}$

$\mathrm{e} 1 \Downarrow \operatorname{rec} f x=e$	$e 2 \Downarrow v 2 \quad \mathrm{e}[\mathrm{rec} \mathrm{f} x=\mathrm{e} / \mathrm{f}][\mathrm{v} 2 / \mathrm{x}] \Downarrow v 3$
	$\mathrm{e} 1 \mathrm{e} 2 \Downarrow \mathrm{v} 3$

- There's no formal rule for handling free variables
- No rule for evaluating function calls when a non-function in the caller position
- In general, no rule when further evaluation is impossible
- the rules express the legal evaluations and say nothing about what to do in error situations
- the code handles the error situations by raising exceptions
- type theorists prove that well-typed programs don't run into undefined cases

Summary

We can reason about OCaml programs using a substitution model.

- integers, bools, strings, chars, and functions are values
- value rule: values evaluate to themselves
- let rule: "let $\mathrm{x}=\mathrm{e} 1$ in e2" : substitute e1's value for x into e 2
- fun call rule: "(fun x->e2) e1": substitute e1's value for x into e2
- rec call rule: "(rec $x=e 1$) e2" : like fun call rule, but also substitute recursive function for name of function
- To unwind: substitute (rec $x=e 1$) for x in e1

We can make the evaluation model precise by building an interpreter and using that interpreter as a specification of the language semantics.

We can also specify the evaluation model using a set of inference rules

- more on this in COS 510

Limitations

The substitution model is only a model.

- it does not accurately model all of OCaml's features
- I/O, exceptions, mutation, concurrency, ...
- we can build models of these things, but they aren't as simple.
- even substitution is tricky to formalize!

Limitations

The substitution model is only a model.

- it does not accurately model all of OCaml's features
- I/O, exceptions, mutation, concurrency, ...
- we can build models of these things, but they aren't as simple.
- even substitution is tricky to formalize!

Limitations

The substitution model is only a model.

- it does not accurately model all of OCaml's features
- I/O, exceptions, mutation, concurrency, ...
- we can build models of these things, but they aren't as simple.
- even substitution is tricky to formalize!

It's useful for reasoning about correctness of algorithms.

- we can use it to formally prove that, for instance:
- map $\mathrm{f}(\mathrm{mapg} \mathrm{xs})==\operatorname{map}(c o m p \mathrm{fg}) \mathrm{xs}$
- proof: by induction on the length of the list $x s$, using the definitions of the substitution model.
- we often model complicated systems (e.g., protocols) using a small functional language and substitution-based evaluation.

It is not useful for reasoning about execution time or space.

- more complex models needed there

Reasoning about Nested Evaluation

Nested Evaluation, aka, "inlining" is a common compiler optimization.

It is also used in theorem provers to reason about equality of expressions.

Reasoning about Nested Evaluation

$$
\begin{aligned}
& \text { let } g x= \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x
\end{aligned}
$$

Reasoning about Nested Evaluation

$$
\begin{aligned}
& \text { let } g x= \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x
\end{aligned}
$$

Reasoning about Nested Evaluation

let $\mathrm{g} x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
f x

Reasoning about Nested Evaluation

```
let \(\mathrm{g}=\)
    let \(f=\) fun \(y->y+x\) in
    let \(x=3\) in
    f x
```

$-->$	$g 10$
	let $f=$ fun $y->y+10$ in
	let $x=3$ in
$f x$	
-->	
	let $x=3$ in
	$($ fun $y->y+10) x$

Reasoning about Nested Evaluation

$$
\begin{aligned}
& \text { let } g x= \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
g 10 \\
--> \\
\quad \text { let } f=\text { fun } y->y+10 \text { in } \\
\\
\text { let } x=3 \text { in } \\
f x
\end{array} \\
& \quad \text { let } x=3 \text { in } \\
& \quad(\text { fun } y->y+10) x \\
& --> \\
& \quad(\text { fun } y->y+10) 3
\end{aligned}
$$

Reasoning about Nested Evaluation

$$
\begin{aligned}
& \text { let } g x= \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x
\end{aligned}
$$

$$
\begin{aligned}
& \quad g 10 \\
& \text {--> } \\
& \text { let } f=\text { fun } y->y+10 \text { in } \\
& \\
& \text { let } x=3 \text { in } \\
& \quad f x \\
& --> \\
& \quad \text { let } x=3 \text { in } \\
& \text { (fun } y->y+10) x \\
& --> \\
& (\text { fun } y->y+10) 3 \\
& --> \\
& (3+10) \\
& --> \\
& 13
\end{aligned}
$$

Reasoning about Nested Evaluation

Reasoning about Nested Evaluation

Reasoning about Nested Evaluation

Reasoning about Nested Evaluation

let $g x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
$f x$
let $\mathrm{g} x=$

$$
\begin{aligned}
& \text { let } x=3 \text { in } \\
& x+x
\end{aligned}
$$

Reasoning about Nested Evaluation

let $g x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
$f x$
let $\mathrm{g} x=$

$$
\begin{aligned}
& \text { let } x=3 \text { in } \\
& x+x
\end{aligned}
$$

g 10 -->* 13

Reasoning about Nested Evaluation

let $g x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
$f x$

$$
\begin{aligned}
& \text { let } g x= \\
& \quad \text { let } x=3 \text { in } \\
& x+x
\end{aligned}
$$

$$
\text { g } 10 \text {-->* } 13
$$

Reasoning about Nested Evaluation

let $g x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
$f x$

$$
\begin{aligned}
& \text { let } g x= \\
& \quad \text { let } x=3 \text { in } \\
& x+x
\end{aligned}
$$

g 10 -->* 13

$$
\begin{aligned}
& \text { g } 10 \\
& --> \\
& \text { let } x=3 \text { in } \\
& x+x \\
& --> \\
& 3+3 \\
& --> \\
& 6
\end{aligned}
$$

Reasoning about Nested Evaluation

let $\mathrm{g} x=$

let $f=$ fun $y->y+x$ in let $x=3$ in f x
let $\mathrm{g} x=$ let $x=3$ in $\mathrm{x}+\mathrm{x}$
g 10 -->* 13

Our goal in inlining is to make the computation more efficient but to get the same answer!

$$
\begin{aligned}
& \text { g } 10 \\
& --> \\
& \text { let } x=3 \text { in } \\
& x+x \\
& --> \\
& 3+3 \\
& --> \\
& 6
\end{aligned}
$$

The transformation is incorrect.

Reasoning about Nested Evaluation

Substitute \longleftarrow WRONG!
let $\mathrm{g} x=$

$$
\begin{aligned}
& \text { let } x=3 \text { in } \\
& ((\text { fun } y->y+x) x)
\end{aligned}
$$

Solution

Solution: More Generally

$$
\text { (let } x=e 1 \text { in e2) }[e / y]=\text { let } x=e 1^{\prime} \text { in } e 2^{\prime}
$$

where

$$
\begin{aligned}
& e 1^{\prime}=e 1[e / y] \\
& e 2^{\prime}=e 2 \quad \text { if } y=x
\end{aligned}
$$

$e 2^{\prime}=e 2[e / y]$ if the free variables of e do not include x and if $\mathrm{y}!=\mathrm{x}$
and otherwise, choose an unused variable z and alpha-convert let $\mathrm{x}=\ldots$ in ... to let $\mathrm{z}=\ldots$ in ...

Solution: More Generally

$$
\text { (let } x=e 1 \text { in e2) }[e / y]=\text { let } x=e 1^{\prime} \text { in } e 2^{\prime}
$$

where

$$
\begin{aligned}
& e 1^{\prime}=e 1[e / y] \\
& e 2^{\prime}=e 2 \quad \text { if } y=x
\end{aligned}
$$

$e 2^{\prime}=e 2[e / y]$ if the free variables of e do not include x and if $y!=x$
and otherwise, choose an unused variable z and alpha-convert let $x=\ldots$ in ... to let $z=\ldots$ in ...

ASSIGNMENT \#4

Two Parts

Part 1: Build your own interpreter

- More features: booleans, pairs, lists, match
- Different model: environment-based vs substitution-based
- The abstract syntax tree Fun_e(_,_) is no longer a value
- a Fun_e is not a result of a computation
- There is one more computation step to do:
- creation of a closure from a Fun_e expression

Part 2: Prove facts about programs using equational reasoning

- we have already seen a bit of equational reasoning
- if e1 --> e2 then e1 == e2
- more in precept and next week

AN ENVIRONMENT MODEL FOR PROGRAM EXECUTION

Substitution

Consider the following program:

```
let choose (arg:bool * int * int) : int -> int =
    let (b, x, y) = arg in
    if b then
        (fun n -> n + x)
    else
        (fun n -> n + y)
choose (true, 1, 2)
```


Substitution

Consider the following program:

```
let choose (arg:bool * int * int) : int -> int =
    let (b, x, y) = arg in
    if b then
        (fun n -> n + x)
    else
        (fun n -> n + y)
choose (true, 1, 2)
```

Its execution behavior according to the substitution model:

```
choose (true, 1, 2)
```


Substitution

Consider the following program:

```
let choose (arg:bool * int * int) : int -> int =
    let (b, x, y) = arg in
    if b then
        (fun n -> n + x)
    else
        (fun n -> n + y)
choose (true, 1, 2)
```

Its execution behavior according to the substitution model:

```
choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
```


Substitution

Consider the following program:

```
let choose (arg:bool * int * int) : int -> int =
    let (b, x, y) = arg in
    if b then
        (fun n -> n + x)
    else
        (fun n -> n + y)
choose (true, 1, 2)
```

Its execution behavior according to the substitution model:

```
    choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
```


Substitution

Consider the following program:

```
let choose (arg:bool * int * int) : int -> int =
    let (b, x, y) = arg in
    if b then
        (fun n -> n + x)
    else
        (fun n -> n + y)
choose (true, 1, 2)
```

Its execution behavior according to the substitution model:

```
    choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
```


Substitution

How much work does the interpreter have to do?

Substitution

How much work does the interpreter have to do?

Substitution

How much work does the interpreter have to do?

Substitution

How much work does the interpreter have to do?

Every step takes time proportional to the size of the program.

We had to traverse the "else" branch of the if twice, even though we never executed it!

The Substitution Model is Expensive

The substitution model of evaluation is just a model. It says that we generate new code at each step of a computation. We don't do that in reality. Too expensive!

The substitution model is good for reasoning about the inputoutput behavior of a function but doesn't tell us much about the resources used along the way.

Efficient interpreters use environments rather than substitution.

You can think of an environment as delaying substitution until it is needed.

Environment Models

An environment is a key-value store where the keys are variables and the values are ... programming language values.

Example:

[x -> 1; b -> true; y -> 2]
this environment:

- binds 1 to x
- binds true to b
- binds 2 to y

Execution with Environment Models

Execution with substitution:

```
let x = 3 in
let b= true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
3
```

Form of the semantic relation:
e1 --> e2

Execution with Environment Models

Execution with substitution:

```
let x=3 in
let b= true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
3
```

Form of the semantic relation:
e1 --> e2

Execution with environments:
([], let $x=3$ in
let $b=$ true in if b then x else 0)

Form of the semantic relation:
(env1, e1) --> (env2, e2)

Execution with Environment Models

Execution with substitution:

```
let x=3 in
let b= true in
if b}\mathrm{ then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
```


Execution with Environment Models

Execution with substitution:

```
let x = 3 in
let b= true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
```


Execution with Environment Models

Execution with substitution:

```
let x = 3 in
let b= true in
if b}\mathrm{ then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
```

Execution with environments:

```
([], let x = 3 in
    let b= true in
    if b then x else 0)
-->
([x->3], let b = true in
    if b}\mathrm{ then }x\mathrm{ else 0
-->
([x->3;b->true], if b then x else 0)
-->
([[x->3;b->true], if true then x else 0)
```


Execution with Environment Models

Execution with substitution:

```
let x=3 in
let b= true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
```

Execution with environments:

$$
\begin{aligned}
& \text { ([], let } x=3 \text { in } \\
& \quad \text { let } b=\text { true in } \\
& \quad \text { if } b \text { then } x \text { else } 0) \\
& --\gg \\
& \begin{array}{l}
([x->3], \text { let } b=\text { true in } \\
\text { if } b \text { then } x \text { else } 0
\end{array} \\
& \text {--> } \\
& \begin{array}{l}
([x->3 ; b->\text { true }], \text { if } b \text { then } x \text { else } 0) \\
--> \\
([x->3 ; b->\text { true }], \text { if true then } x \text { else } 0) \\
--> \\
([x->3 ; b->\text { true }], x)
\end{array}
\end{aligned}
$$

Execution with Environment Models

Execution with substitution:

```
let x = 3 in
let b= true in
if b}\mathrm{ then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3
```

Execution with environments:

$$
\begin{aligned}
& \text { ([], let } x=3 \text { in } \\
& \quad \text { let } b=\text { true in } \\
& \quad \text { if } b \text { then } x \text { else } 0) \\
& --> \\
& \begin{array}{l}
([x->3], \text { let } b=\text { true in } \\
\\
\text { if } b \text { then } x \text { else } 0
\end{array} \\
& \text {--> } \\
& \begin{array}{l}
([x->3 ; b->\text { true }], \text { if } b \text { then } x \text { else } 0) \\
--> \\
([x->3 ; b->\text { true }], \text { if true then } x \text { else } 0) \\
--> \\
([x->3 ; b->\text { true }], x) \\
--> \\
([x->3 ; b->\text { true }], 3)
\end{array}
\end{aligned}
$$

Another Example

```
([],
(fun x ->
    let f=fun y -> y + x in
    let x=3 in
    fx) 10)
```


Another Example

```
([],
(fun x ->
        let f= fun y -> y+x in
        let x = 3 in
        fx) 10)
([x -> 10],
    let f= fun y -> y + x in
    let x=3 in
    fx)
```


Another Example

```
([],
(fun x ->
    let f= fun y -> y+x in
    let x = 3 in
    fx) 10)
([x -> 10],
    let f= fun y -> y + x in
    let x=3 in
    fx)
([x -> 10; f -> fun y -> y + x],
    let x = 3 in
    fx)
```


Another Example

```
([],
(fun x ->
    let f= fun y -> y + x in
    let x=3 in
    fx) 10)
([x -> 10],
    let f= fun y -> y + x in
    let x=3 in
    fx)
([x -> 10; f -> fun y -> y + x],
    let x = 3 in
    fx)
    -->
([x -> 3; f -> fun y -> y + x],
    fx)
```


Another Example

$$
\begin{aligned}
& \text { ([], } \\
& \text { (fun } x-> \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x \text {) } 10 \text {) } \\
& \hline--> \\
& \text { ([x-> 10], } \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \hline--> \\
& \hline \text { ([x-> 10; } f->\text { fun } y->y+x], \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \hline--> \\
& \text { ([x-> } 3 ; f->\text { fun } y->y+x], \\
& f x \text {) }
\end{aligned}
$$

($[x->3 ; f->$ fun $y->y+x]$,
(fun $y->y+x) x$)

Another Example

$$
\left.\begin{array}{l}
\text { ([], } \\
\text { (fun } x-> \\
\text { let } f=\text { fun } y->y+x \text { in } \\
\text { let } x=3 \text { in } \\
\quad f x \text {) } 10 \text {) }
\end{array}\right] \begin{aligned}
& \text {--> } \\
& \text { ([x -> 10], } \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \text {--> } \\
& \text { ([x -> } 10 ; f \text { f-> fun } y->y+x], \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \text {--> } \\
& \text { ([x -> } 3 ; f \text { f-> fun } y->y+x], \\
& f x \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& ([x->3 ; f->\text { fun } y->y+x], \\
& (\text { fun } y->y+x) x) \\
& --> \\
& ([x->3 ; f->\text { fun } y->y+x], \\
& (\text { fun } y->y+x) 3 \text {) }
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \text { ([], } \\
& \text { (fun } x-> \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x \text {) } 10 \text {) } \\
& \hline--> \\
& \text { ([x-> 10], } \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \hline--> \\
& \hline \text { ([x-> 10; } f->\text { fun } y->y+x], \\
& \text { let } x=3 \text { in } \\
& f x \text {) } \\
& \hline--> \\
& \hline \text { ([x-> } 3 ; f->\text { fun } y->y+x], \\
& f x \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
([x->3 ; f->\text { fun } y->y+x], \\
\text { (fun } y->y+x) x)
\end{array} \\
& \\
& \left(\begin{array}{l}
(x->3 ; f->\text { fun } y->y+x], \\
\text { (fun } y->y+x) 3 \text {) }
\end{array}\right. \\
& \hline--> \\
& ([x->3 ; f->\text { fun } y->y+x ; y->3], \\
& y+x)
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& \text { ([], } \\
& \text { (fun } x \text {-> } \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& \text { fx) } 10 \text {) } \\
& \begin{array}{l}
\text {--> } \\
\text { ([x-> 10], }
\end{array} \\
& \text { let } f=\text { fun } y->y+x \text { in } \\
& \text { let } x=3 \text { in } \\
& \text { fx) } \\
& \text { (}[x->10 ; f->\text { fun } y->y+x] \text {, } \\
& \text { let } x=3 \text { in } \\
& \text { fx) } \\
& \text {--> } \\
& \text { ([x-> 3; f -> fun y -> } y+x] \text {, } \\
& \text { fx) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
([x->3 ; f->\text { fun } y->y+x], \\
(\text { fun } y->y+x) x)
\end{array} \\
& \cline { 1 - 2 } \\
& \begin{array}{l}
--> \\
([x->3 ; f->\text { fun } y->y+x], \\
\text { (fun } y->y+x) 3)
\end{array} \\
& \hline--> \\
& ([x->3 ; f->\text { fun } y->y+x ; y->3], \\
& y+x) \\
& \hline--> \\
& \begin{array}{l}
([x->3 ; f->\text { fun } y->y+x ; y->3], \\
3+3)
\end{array} \\
& \hline--> \\
& \hline([x->3 ; f->\text { fun } y->y+x ; y->3], \\
& 6)
\end{aligned}
$$

Recall our Problem with Inlining/Substitution

let $g x=$
let $f=$ fun $y->y+x$ in
let $x=3$ in
$f x$
\(\xrightarrow[\begin{array}{l}Incorrect

Inlining\end{array}]{\)| let $g x=$ |
| :--- |
| let $x=3 \text { in }$ |
| $x+x$ |$}$

g 10 -->* 13

$$
\text { g } 10-->* 6
$$

```
([],
    (fun x ->
    let f=fun y -> y + x in
    let x=3 in
    fx) 10)
```


([], ...) -->*

Incorrect
Execution

Another Example

Solution

Functions must carry with them the appropriate environment

A closure is a pair of code and environment

closure

In the environment model, function definitions evaluate to function closures

Another Example

```
([],
(fun x ->
    let f= fun y -> y+x in
    let x=3 in
    fx) 10)
```


Another Example

```
([],
(fun x ->
    let f= fun y -> y+x in
    let x = 3 in
    fx) 10)
([x -> 10],
    let f= fun y -> y+x in
    let x=3 in
    fx)
```


Another Example

```
([],
(fun x ->
    let f= fun y-> y+x in
    let x = 3 in
    fx) 10)
l
    let x=3 in
    fx)
([x -> 10; f -> closure [x->10] y=y + x],
let x=3 in
    fx)
```


Another Example

```
([],
(fun x ->
    let f= fun y-> y+x in
    let x=3 in
    fx) 10)
l
    let x=3 in
    fx)
([x -> 10; f-> closure [x->10] fun y -> y = y + x],
    let x=3 in
    fx)
    -->
    ([x -> 3;f f> closure [x->10] fun y >y = y + x],],
    fx)
```


Another Example

Another Example

([x-> 10; f -> closure $[x->10] y=y+x]$, let $x=3$ in
fx)
-->
([x-> 3; f -> closure $[x->10] y=y+x]$,$] ,$ fx)
([x-> 3; f -> closure $[x->10] y=y+x]$, (closure $[x->10] y=y+x) x$)
-->
([$x->3$; $f->$ closure $[x->10] y=y+x]$,
(closure $[x->10]$ fun $y->y=y+x) 3$)

Another Example

$$
\begin{aligned}
& ([x->3 ; f->\text { closure }[x->10] y=y+x], \\
& (\text { closure }[x->10] y=y+x) x) \\
& --> \\
& ([x->3 ; f->\text { closure }[x->10] y=y+x], \\
& (\text { closure }[x->10] y=y+x) 3)
\end{aligned} \begin{aligned}
& --> \\
& ([x->10 ; y->3], \\
& y+x)
\end{aligned}
$$

($[x->10 ; f$-> closure $[x->10] y=y+x]$, let $x=3$ in
fx)
-->
([x-> 3;f -> closure $[x->10] y=y+x]$,$] ,$ fx)

When you call a closure, replace the current environment with the closure's environment, and bind the parameter to the argument

Another Example

([x -> 10; f -> closure $[x->10] y=y+x]$, let $x=3$ in
fx)
-->
([x -> 3; f -> closure $[x->10] y=y+x]$, , fx)
([x-> 3; f-> closure $[x->10] y=y+x]$, (closure $[x->10] y=y+x) x$)
-->
([x->3; f-> closure $[x->10] y=y+x]$, (closure $[x->10] y=y+x) 3$)
([x -> 10; y -> 3],
$y+x$)
-->
([x -> 10; y -> 3], $3+10$)
-->
([x -> 10; y -> 3], 13)

Summary: Environment Models

In environment-based interpreter, values are drawn from an environment. This is more efficient than using substitution.

To implement nested, higher-order functions, pair functions with the environment in play when the function is defined.

Pairs of function code \& environment are called closures.

You have two weeks for assignment \#4

- Recommendation: Don't wait until next week to start!

