COS 316
Precept:

Concurrency
Part 2

Precept Objectives

e Review Go concurrency concepts (needed for
“connection pool” assignment)
e Gain more practice with Go and concurrency concepts
o RWMutex
o Condition Variables:
m sync.L.Lock and sync.L.Unlock
m sync.Cond and Signal, Wait, Broadcast
e Understand the Dining Philosophers problem

Review Mutexes

e Consider the following example

https://play.golang.org/p/LAfTM5g0-E|

https://play.golang.org/p/LAfTM5gO-EJ

RWMutex

An RWMutex - a reader+writer mutual exclusion lock.
For an addressable RWwMutex value mu (mu sync.RWMutex)
o data writers
m acquire the write lock of mu through mu.Lock () method calls
m release the write lock of mu through mu.Unlock
o data readers
m acquire the read lock of mu through mu.RLock () method calls.
m release the read lock of mu through mu.RUnlock
Why do we want different types of locks for writing vs
reading?
Modify the example (from previous slide) to use RWMutex

https://golang.org/pkg/sync/#RWMutex

Notifications

sync.Mutex and sync.RWMutex values
can also be used to implement
notifications
o Note - not recommended - for
illustrative purposes only!
What gets printed first? Why?

https://play.golang.org/p/cw 0s3bOfAG

func main() {

var mu sync.Mutex

mu.Lock()

go func() {
time.Sleep(time.Second)
fmt.Println("COS")
mu.Unlock()

0O

mu.Lock()

fmt.Println("316")

https://play.golang.org/p/cw_os3bQfAG

Condition Variables - sync.

sync.Cond type - provides an efficient way to send
notifications among goroutines

sync.Cond value holds a sync. Locker field with name L
- field value is of type xsync.Mutex or xsync.RWMutex
o E.g.:
m cond := sync.NewCond(&sync.Mutex{})
m cond.L.Lock()
m cond.L.UnLock()

sync.Cond value holds a FIFO queue of waiting
goroutines

commonly used to allow threads to wait on a condition to
be true: consumers wait until a producer signals that
something happened

Cond

Mutex or
RWMutex

JUbbout

—

https://golang.org/pkg/sync/#Cond
https://golang.org/pkg/sync/#Locker

Condition Variables - L.Lock(), L.Unlock(),
Wait(), Broadcast(), Signal()

e cond := sync.NewCond(&sync.Mutex{})

e cond.L. Lock(—)/_.
e cond.Wait()

e cond.Broadcast()\

e cond.Signal()

Unblock all the goroutines in
(and remove them from) the
waiting goroutine queue

Unblock the head goroutine in
(and remove them from) the
waiting goroutine queue

Call L.Lock() before
Wait()

Insert calling goroutine in
queue and block (wait)
Calls L.Unlock()

Blocked routines go back to
running state

Invokes cond.L.Lock() (in the
resumed cond.Wait() call) to
try to acquire and hold the
lock cond.L again

cond.Wait() call exits after the
cond.L.Lock() call returns

Condition Variables - Example

e Review the following example

e https://go.dev/play/p/8AmM5TUX|SVS

https://go.dev/play/p/8Am51UxjSVS

sync.Cond - Always Check the Condition!

Why is this loop here?

cond.Wait() does not guarantee
the condition holds when it returns

The condition could have been made
false again while the goroutine was
waiting to run

Always check the condition, and keep
waiting if it does not hold

checkCondition := func() bool {
// Check the condition

}

for !checkCondition() {
cond.Wait()

}
cond.L.Unlock()

Dining Philosophers

Classic problem that illustrates
issues related to synchronization
Models concept of multiple
processes competing for limited
resources

Formulated by E.W. Dijkstra

Framework:
o Five philosophers seated at a
table
o Infinite cycle of thinking and
eating

o Philosopher must pick up both
forks in order to eat

o Determine policy / algorithm so
that each philosopher gets to
eat and does not starve

Dining Philosophers Policy

e The philosophers require a shared policy that can
be applied concurrently

e The philosophers are hungry! The policy should let
everyone everyone eat (eventually)

e The philosophers are utterly dedicated to the

proposition of equality: the policy should be
totally fair

e Discuss - what can go wrong?

Dining Philosophers - Solution 1

type Philosopher struct {

name string // name of philosopher
left -1int // fork number on the left
right int // fork number on the right
}
func (p *Philosopher) Dine(table []sync.Mutex) {
for {
p.Think()
table[p.left].Lock()
table[p.right].Lock()
p.Eat()
table[p.right].Unlock()
table[p.left].Unlock()
}

func main() {
philosophers := []xPhilosopher{
&Philosopher{"Michelle",
&Philosopher{"Bill",
&Philosopher{"Sonia",
&Philosopher{"Brooke",
&Philosopher{"Eric",

}

table := make([]sync.Mutex, len(philosophers))

for _, philosopher :=
go func(p *Philosopher) {
p.Dine(table)
} (philosopher)
}

1},
2},
3},
4},
0},

range philosophers {

Solution 1 - Demonstration

e Run the program:
o https://play.golang.org/p/bVOJhIhNI9It

e Notes
o Math.rand does not produce random numbers
on the the playground
o Try running locally (copy and paste)

https://play.golang.org/p/bV0JhIhN9lt

4 Necessary Conditions for Deadlock

Mutual Exclusion
Hold and wait
No preemption
Circular wait

Solution to Problem

> Dijkstra
o Number the resources (forks) from 0 to 4
o Process (philosopher) will always pick up the lower-numbered
fork first, and then the higher-numbered fork

> Are there any problems with this approach?

References

https://qo101.org/article/concurrent-synchronization-more.html

https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource hierarchy solution

16

https://go101.org/article/concurrent-synchronization-more.html
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution

