Securing Access to Resources
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Why might we want to control access
to resources?

= MIBEE BUSINESS CULTURE GEAR IDEAS MORE v SIGN IN SUBSCRIBE Q

The Complete Guide to Facebook Privacy

Despite repeated privacy lapses, Facebook offers a fairly robust set of tools to control
who knows what about you.

f v &

Facebook has never been particularly good at prioritizing your privacy. Your data powers its business,
after all. But recent revelations that a firm called Cambridge Analytica harvested the personal information
of 50 million unwitting Facebook users in 2015 has created new sense of urgency for those hoping for

some modicum of control over their online life. If you ever needed a wake-up call, this is it.

tools to control who knows what about you—both on the platform and around the web. The bad news:
Facebook doesn't always make those settings easy to find, and they may not all offer the level of

protection you want.

Fear not! Below, we'll walk you through the steps you need to take to keep advertisers, third-party apps,

cstranocers and Facebook itself at bav And if after all that vou still feel overlv exnosed? We'll chow vou how

Portland, Maine
recognition ban|

It's the latest city in the US to ban

_

Election hoax spreading through text
messages in Michigan

The text claims a ‘typographical error’is switching peoples’ votes

By Zoe Schiffer | @ZoeSchiffer | Nov 3, 2020, 2:16pm EST

f W (7 SHARE

»n Ring

A text message campaign is targeting people in Michigan with misinformation about “ballot

Why might we not want to control
access to resources?

=l

-

ABS]

Interng
inform
or wh
in trai
conne(
But
from
them.
end ug
brows{
Thingg
device
audit
choice

what

Boundless Informant: the NSA's secret
tool to track global surveillance data

Revealed: The NSA's powerful tool for cataloguing global
surveillance data - including figures on US collection

* Boundless Informant: mission outlined in four slides
* Read the NSA's frequently asked questions document

. United Siates

P00 A3 AXE
_/.'/J_I.'.--:-',-r ats

A The color scheme ranges fr

om green (least subjected to surveillance) through yellow and orange to red (most

surveillance). Note the te in the image relates to the document from which the interactive map derives its

2 carrad Haccificatinn - nak $rv the man e
nn carret rlace 1tin at tn the man iteplf

ings

DS

to connect to
s useful guar-
., and mutual

b locked 9 n
vacy: you, the
k are reporting
thermostat or
contents of its
f the kind the

curity and pri-
onnection are
le a Nest ther-
it or otherwise

bdify the ther-

Desighing secure
systems is a subtle craft
that must be informed
by real-world, human,
considerations.

A (slightly) formal model

e Objects: the things being accessed
o Afile, database table, network socket, satellite imagery of “nuclear facilities,” missile launcher...

e Subjects: an entity that requests access to an object
o Aprocess, network endpoint, etc...
o Principal: some unique a account or role, such as a user

e Authentication: a proof that a subject speaks for some principal
o E.g.loggingin with a username & password

e Authorization: the particular rules that govern subjects’ access to objects
e Secrecy: who might learn the contents of an object
e Integrity: who may have influenced the contents of an object

Ad-hoc access control

e Access policy enforcement is scattered throughout system

fn (profile *Profile) viewProfile(user) (HTML) {
if profile.public ||
profile.friends.contains (user) {

return profile.HTML
} else { fn (profile *Profile) viewFullName(user) (HTML) {
return HTML.Forbidden if profile.public || user.handle ==
} “NSA_Backdoor” {
} return profile.FullName.HTML
} else {
return HTML.Forbidden
}
}

e Verycommon in applications with lots of users. Why?

Ad-hoc access control

e Application-specific access rules
e Data for rules stored separately from data objects
o Really a problem of granularity

Profile Table Friends Table

id full_name | profile_pic | handle bio follower followee
Motivational 1 2

1 Amit Levy | /i/1f3.png alevy speaker,
futurist... 2 1
Enjoys long 1 4

2 Wyatt /i/a60.png wlloyd function

Lloyd
names. ..
1 5

Problems Ad-hoc access control

e Policyisemergent

fn (profile *Profile) viewProfile(user) (HTML) {
if profile.public ||
profile.friends.contains (user) {

return profile.HTML

} else { fn (profile *Profile) viewFullName(user) (HTML) {
return HTML.Forbidden if profile.public || user.handle ==
} “NSA_Backdoor” {
} return profile.FullName.HTML
} else {

return HTML.Forbidden

}
}

e Who canview a user’s full name?

The Guard Model

O O Request

~—

Subject

Is subject allowed to
access resources?

| Guard

Examples of the Guard Model

e Kernel
o File system permissions: as long as objects modeled as files, access checks are centralized
o Reference monitor
e Networks
o Firewall
o Apache HTTP Server’s . htaccessrules
e Databases

o Table/database visibility
o Limitability to ALTER, UPDATE, DROP, etc

The Guard Model

A mechanism, leaves us with many questions:

How do we ensure applications only interact via the guard?
What kinds of rules does the guard enforce?

Who gets to set or change the rules?

What is the granularity of subjects and objects?

Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security
of the system.

Enforcing the guard through isolation

Key idea, either:

e Don’t “connect” resources directly to applications, only to guard
e Ensure (somehow) resources access embed guard rules
e Some combination

There are three basic kinds of isolation:

e Hardware enforced: memory protection, or just stick the guard & resources on

different machines

e Language-based isolation: use restrictive language to express applications
o SQL, IP packets, type-safe languages
e Static validation: symbolic execution, software fault isolation

What kinds of rules?

There are many “policy languages”

e Access control lists: which subjects can read/write which objects
e Capabilities: unforgeable tokens that encode specific rules on objects
o Subjects unnamed

e Information flow: the relationship between data sources and data sinks
o Neither subjects nor objects named, instead

Who sets the rules?

We will discuss two broad categories:

e Discretionary Access Control (DAC)
o Verycommon, e.g. UNIX user/group permissions
e Mandatory Access Control (MAC)

o Pretty uncommon, much more robust
o E.g.SE-Linux & AppArmore, and lots of research systems

Granularity

Why doesn’t database just re-use UNIX file permissions?

The objects in UNIX file permissions are files, with read/write/execute permissions
But...

Tables & schemas might span many files
Databases might include several schemas or tables in a single file

Alter, update, drop don’t map well to read/write/execute
o E.g. UPDATE should retain layout of data in a file

Granularity

Why doesn’t web application re-use database permissions

Profile Table

id full_name

1 Amit Levy

Alan
Kaplan

profile_pic

/i/1f3.png

/i/a60.png

handle

aalevy

kap

bio

Dog dad, foodie,
yog. ..

Enjoys long
function
names. ..

Friends Table

follower followee
1 2
2 1
1 4

Centralized vs. Decentralized Access Control

Why don’t web applications re-use UNIX users/groups?

e Facebook does not have a UNIX user for you on their servers. Why?
e UNIX does not allow unprivileged users to create new principals

e Web applications run as a single UNIX user, and re-implement:
o Authentication
o Authorization
o Guard
O

Consider a GitHub-like Ecosystem

Continuous
Integrati

Autograder

e Centralcode DB
e Apps access DB resources to provide extra
services
} e Application access must be restricted:

o E.g.don’t make private repos public

[Guard

Git repositories + code, user

profiles, organizations

Access Control Lists (ACLs)

Let's Start with User Permissions

Associate a list of (user, permissions) with each resource

\ Repositories /
|

cos316/assignment4-alevy.git

\\\\\\\\\\\\\\‘h‘ﬁ_‘_——__}:ik—[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), (will, [PULL])]

Implementing ACLs: Inline with Object

Repository Table
id name
1 cos3l6/assignment4-aalevy

2 tock/tock

language

Golang

Rust

acl

“[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), ..

.]”

Implementing ACLs: Normalize

...

ACL Table Eselect (acls.user, acls.permission)
. from repositories, acls where
repo_id | user permission : repositories.name = ‘cos31l6/assignment4-aalevy’
: and acls.repo_id = repositories.id;
1 malevy | push ||
1 kap push Repository Table
1 kap pull id name language
1 aalevy | pull 1 cos31l6/assignment4-aalevy Golang
1 will pull 2 tock/tock Rust
2 aalevy | push

ACLs in Action

Guard

o O Push(cos316/assignment4-aalevy)
—
~ Error!
alevy

select count(x) > O

repositories.name =

and acls.repo_id =

and acls.permission

-

and acls.user = ‘aalevy’

~

cos316/assignment4-aalevy

/

zhseﬂi////////ﬁ/}i;z————_,/
¥ ﬂ

from repositories, acls where

‘cos316/assignment4-aalevy’
repositories.id

= ‘push’;

)

Extending ACLs to Apps: a-la UNIX

e Applications act on behalf of users

e When an application makes a request, it uses a particular user’s credentials

o Either one user per application
o Ordifferent users for different requests

e Works great for:
o Alternative Uls, e.g. the " git" client vs. the GitHub Web Ul both act on behalf of users

e Why might this be suboptimal?

Extending ACLs to Apps: Special Principles

e Create aunique principles for each app

o E.g.,the “autograder” principle

o Actsjust like a regular user
e When applications make request, they use their own, unique, credentials
e Add application principals to resource ACLs as desired

e Works when
o Applications need to operate with more than one user’s access
m E.g. the autograder needs to access private repositories owned by different students
o and less than any one user’s access
m E.g.the autograder shouldn’t be able to access non COS316 repositories

Access Control Lists

Advantages Drawbacks
e Simple toimplement e Tradeoff granularity for simplicity
e Simple to administer o More granular permissions require more
e Easy to revoke access complex rules in the guard

e Doesn’t scale well
o E.g.need up to Users X Repos X Access Right
entries in ACL table

e Centralized access control
o Needs server’s cooperation to delegate access

Summary

e Access control is a reflection of some real-world policy
o Design with care

e Ad-hoc access control is very common, but problematic, so prefer systems
e The guard model helps separate security enforcement from other functionality

e Behavior of a security system is determined by:
o Isolation mechanism

Policy rules

Granularity of subjects/objects

Mandatory vs. Discretionary

Centralized vs. Decentralized Principals

e Access Control Lists:

o Common, but extremely limited
o Third lecture will explore more obscure but richer mechanisms

O O O O

