
Consistency

COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Why Do We Build Systems?

• …

• Abstract away complexity

Distributed Systems are Highly
Complex Internally

A-F

G-L

M-R

S-Z

Sharding

(Geo)-Replication

Concurrent access by many client

Distributed Systems are Highly
Complex Internally

A-F

G-L

M-R

S-Z

Sharding, Geo-Replication, Concurrency

Distributed Systems are Highly
Complex Internally

A-F

G-L

M-R

S-Z

Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this

complexity is abstracted away

Consistency Models

• Contract between a (distributed) system and the
applications that run on it

• A consistency model is a set of guarantees made
by the distributed system

• Not the interface, but defines semantics of the
interface

Stronger vs Weaker Consistency

Application Code Application Code

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System

C
o

m
p

le
x
it
y

Stronger vs Weaker Consistency
• Stronger consistency models

+ Easier to write applications

- System must hide many behaviors

- Might be slow

• Fundamental tradeoffs between consistency, availability, and performance

• (Discuss CAP, PRAM, SNOW in 418!)

• Weaker consistency models
- Harder to write applications

Cannot (reasonably) write some applications

+ System needs to hide few behaviors

+ Can be faster!

Consistency Hierarchy

Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single
processor

Everyone sees related
operations in the same order

Anything goes

Linearizability ==
“Appears to be a Single Processor”
• External client submitting requests and getting responses from the system can’t tell this is not a

single processor!

• Consistent with some total order over all operations
• As though all requests processed one by one in some order

• Such that...

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins,

then there is no real-time order
• (But there must be some total order)

Real-Time Ordering Examples

w(x=1)P
A

w(x=2)PB

Mythical
Single

Processor

Real-Time Ordering Examples

w(x=1)P
A

w(x=2)PB

w(x=3)PC

Mythical
Single

Processor

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ✔
w1, w2, r2, w3, r3

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ✔
PD r(x)=1 r(x)=2 ✔

w1, r1, w2, r2, w3

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ✔
PD r(x)=1 r(x)=2 ✔
PD r(x)=2 r(x)=2 ✔

w1, w2, r2, r2, w3

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ✔
PD r(x)=1 r(x)=2 ✔
PD r(x)=2 r(x)=2 ✔

w1, r1, w2, w3, r3

PD r(x)=1 r(x)=3 ✔

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

PD r(x)=2 r(x)=3 ✔
PD r(x)=1 r(x)=2 ✔
PD r(x)=2 r(x)=2 ✔
PD r(x)=1 r(x)=3 ✔
PD r(x)=2 r(x)=1 x

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PF r(x)=2 r(x)=3 r(x)=6 r(x)=5 ✔
w1, w2, r2, w4, w3, r3, w6, r6, w5, r5

OR
w1, w4, w2, r2, w3, r3, w6, r6, w5, r5

OR
w1, w2, r2, w3, r3, w4, w6, r6, w5, r5

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PG r(x)=2 r(x)=5 r(x)=6 r(x)=5 x

Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC

w(x=4)PD w(x=5)

PE w(x=6)

PH r(x)=4 r(x)=2 r(x)=3 r(x)=6 ✔

w1, w4, r4, w2, r2, w3, r3, w5, w6, r6

Linearizable?
w(x=1)P

A w(x=2)PB

r(x)=1PC x

Linearizability ==
“Appears to be a Single Processor”
• External client submitting requests and getting responses from the system can’t tell this is not a

single processor!

• Consistent with some total order over all operations
• As though all requests processed one by one in some order

• Such that...

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins,

then there is no real-time order
• (But there must be some total order)

How to Provide Linearizability?

1. Use a single processor ☺

1. Use “state-machine replication” on top of a
consensus protocol like Paxos
• Distributed system appears to be single processor that does

not fail!!
• Covered extensively in 418

2. …

Consistency Hierarchy

Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single
processor

Everyone sees related
operations in the same order

Anything goes

Causal+ Consistency Informally

1. Writes that are potentially causally related must
be seen by everyone in the same order.

2. Concurrent writes may be seen in a different
order by different entities.
• Concurrent: Writes not causally related

• Potential causality: event a could have a
causal effect on event b.
• Think: is there a path of information from a

to b?
• a and b done by the same entity (e.g., me)

• a is a write and b is a read of that write

• + transitivity

Causal+ Sufficient

Photo Added

Then

Purchase
retained

Deletion
retained

ThenThen

Causal+ Not Sufficient
(Need Linearizability)

• Need a total order of operations
• e.g., Alice’s bank account ≥ 0

• Need a real-time ordering of operations
• e.g., Alice changes her password, Eve cannot login with

old password

Consistency Hierarchy

Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single
processor

Everyone sees related
operations in the same order

Anything goes

Eventual Consistency

• Anything goes for now…
• (If updates stop,

eventually all copies of the data are the same)

• But, eventually consistent systems often try to provide
consistency and often do
• e.g., Facebook’s TAO system provided linearizable results

99.9994% of the time [Lu et al. SOSP ‘15]

• “Good enough” sometimes
• e.g., 99 vs 100 likes

Consistency Model Summary
• Consistency model specifies strength of abstraction

• Linearizability 🡪 Causal+ 🡪 Eventual
• Stronger hides more, but has worse performance

• When building an application, what do you need?
• Select system(s) with necessary consistency
• Always safe to pick stronger

• When building a system, what are your guarantees?
• Must design system such that they always hold
• Must confront fundamental tradeoffs with performance

• What is more important?

	Slide 1: Consistency
	Slide 2: Why Do We Build Systems?
	Slide 3: Distributed Systems are Highly Complex Internally
	Slide 4: Distributed Systems are Highly Complex Internally
	Slide 5: Distributed Systems are Highly Complex Internally
	Slide 6: Consistency Models
	Slide 7: Stronger vs Weaker Consistency
	Slide 8: Stronger vs Weaker Consistency
	Slide 9: Consistency Hierarchy
	Slide 10: Linearizability == “Appears to be a Single Processor”
	Slide 11: Real-Time Ordering Examples
	Slide 12: Real-Time Ordering Examples
	Slide 13: Linearizable?
	Slide 14: Linearizable?
	Slide 15: Linearizable?
	Slide 16: Linearizable?
	Slide 17: Linearizable?
	Slide 18: Linearizable?
	Slide 19: Linearizable?
	Slide 20: Linearizable?
	Slide 21: Linearizable?
	Slide 22: Linearizability == “Appears to be a Single Processor”
	Slide 23: How to Provide Linearizability?
	Slide 24: Consistency Hierarchy
	Slide 25: Causal+ Consistency Informally
	Slide 26: Causal+ Sufficient
	Slide 27: Causal+ Not Sufficient (Need Linearizability)
	Slide 28: Consistency Hierarchy
	Slide 29: Eventual Consistency
	Slide 30: Consistency Model Summary

