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Why Do We Build Systems?

* Abstract away complexity



Distributed Systems are Highly
Complex Internally
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Distributed Systems are Highly

Complex Internally
Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this
complexity is abstracted away




Consistency Models

» Contract between a (distributed) system and the
applications that run on it

* A consistency model is a set of made
by the distributed system

* Not the interface, but defines of the
interface



Stronger vs Weaker Consistency

A

Application Code Application Code

Complexity

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System



Stronger vs Weaker Consistency

» Stronger consistency models
+  Easier to write applications

- System must hide many behaviors

- Might be slow

* Fundamental tradeoffs between consistency, availability, and performance
* (Discuss CAP, PRAM, SNOW in 418))

» Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications

+  System needs to hide few behaviors
+  Can be faster!



Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes



Linearizabllity ==
“Appears to be a Single Processor”

» External client submitting requests and getting responses from the system can’t tell this is not a
single processor!

» Consistent with some over all operations
* As though all requests processed one by one in some order
» Such that...

» Order preserves the between operations
* If operation A before operation B ,

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)



Real-Time Ordering Examples
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Linearizable?
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| inearizable?

JJJJ

Wiy, Iy, Wa, W3 I3

T
ﬂ,___n_l
x 7999
S X X X X
| S S W W
|_|L|___L|
_ T TTT
Al
I N — N
3 I T I
= ZZZE
- Lol L L
T
—
I
RS
=
-



SHHS X

._.
= 1T 1T T1TTT
V_M32231
ERE s

|_||_|L|L|L|L|L|

- - TTTTT

O ¢ dundia

e = XXX x¥

% 1 I I I N I

-

N -

= 1

O =

Q L

C L8 20

L



| inearizable?
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Linearizabllity ==
“Appears to be a Single Processor”

» External client submitting requests and getting responses from the system can’t tell this is not a
single processor!

» Consistent with some over all operations
* As though all requests processed one by one in some order
» Such that...

» Order preserves the between operations
* If operation A before operation B ,

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)



How to Provide Linearizability?

1. Use a single processor ©)

1. Use “state-machine replication” on top of a
consensus protocol like Paxos

* Distributed system appears to be single processor that does
not fail!!

* Covered extensively in 418



Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes



Causal+ Consistency Informally

1. Potential causality: event a have a nust

causal effect on event b.
 Think: is there a path of information from a
to b?

« a and b done by the same entity (e.g., me)
* ais awrite and b is a read of that write
* + transitivity

2.




Causal+ Sufficient
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Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations

* e.g., Alice changes her password, Eve cannot login with
old password



Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes



Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

» But, eventually consistent systems often try to provide
consistency and often do

* e.g., Facebook’s TAO system provided linearizable results
99.9994% of the time [Lu et al. SOSP “15]

» “Good enough” sometimes
* e.d., 99 vs 100 likes



Consistency Model Summary

« Consistency model specifies strength of abstraction
 Linearizability[@ Causal+ [ Eventual
» Stronger hides more, but has worse performance

« When building an application, what do you need?
» Select system(s) with necessary consistency
» Always safe to pick stronger

« When building a system, what are your guarantees?
* Must design system such that they always hold

» Must confront fundamental tradeoffs with performance
« What is more important?
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