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Why Do We Build Systems?

• …

• Abstract away complexity
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Consistency Models:

Control how much of this 

complexity is abstracted away



Consistency Models

• Contract between a (distributed) system and the 
applications that run on it

• A consistency model is a set of guarantees made 
by the distributed system

• Not the interface, but defines semantics of the 
interface
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Stronger vs Weaker Consistency
• Stronger consistency models

+ Easier to write applications

- System must hide many behaviors

- Might be slow

• Fundamental tradeoffs between consistency, availability, and performance

• (Discuss CAP, PRAM, SNOW in 418!)

• Weaker consistency models
- Harder to write applications

Cannot (reasonably) write some applications

+ System needs to hide few behaviors

+ Can be faster!



Consistency Hierarchy

Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single 
processor

Everyone sees related 
operations in the same order

Anything goes



Linearizability == 
“Appears to be a Single Processor”
• External client submitting requests and getting responses from the system can’t tell this is not a 

single processor!

• Consistent with some total order over all operations
• As though all requests processed one by one in some order

• Such that...

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins, 

then there is no real-time order
• (But there must be some total order)
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Linearizable?
w(x=1)P

A w(x=2)PB

w(x=3)PC
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w1, w4, r4, w2, r2, w3, r3, w5, w6, r6



Linearizable?
w(x=1)P

A w(x=2)PB
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Linearizability == 
“Appears to be a Single Processor”
• External client submitting requests and getting responses from the system can’t tell this is not a 

single processor!

• Consistent with some total order over all operations
• As though all requests processed one by one in some order

• Such that...

• Order preserves the real-time ordering between operations
• If operation A completes before operation B begins,

then A is ordered before B in real-time
• If neither A nor B completes before the other begins, 

then there is no real-time order
• (But there must be some total order)



How to Provide Linearizability?

1. Use a single processor ☺

1. Use “state-machine replication” on top of a 
consensus protocol like Paxos
• Distributed system appears to be single processor that does 

not fail!!
• Covered extensively in 418

2. …



Consistency Hierarchy

Linearizability

Causal+ Consistency

Eventual Consistency

Behaves like a single 
processor

Everyone sees related 
operations in the same order

Anything goes



Causal+ Consistency Informally

1. Writes that are potentially causally related must 
be seen by everyone in the same order. 

2. Concurrent writes may be seen in a different 
order by different entities.
• Concurrent: Writes not causally related

• Potential causality: event a could have a 
causal effect on event b. 
• Think: is there a path of information from a

to b?
• a and b done by the same entity (e.g., me)

• a is a write and b is a read of that write

• + transitivity



Causal+ Sufficient
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Causal+ Not Sufficient
(Need Linearizability)

• Need a total order of operations
• e.g., Alice’s bank account ≥ 0

• Need a real-time ordering of operations
• e.g., Alice changes her password, Eve cannot login with 

old password
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Eventual Consistency

• Anything goes for now…
• (If updates stop, 

eventually all copies of the data are the same)

• But, eventually consistent systems often try to provide 
consistency and often do
• e.g., Facebook’s TAO system provided linearizable results 

99.9994% of the time [Lu et al. SOSP ‘15]

• “Good enough” sometimes
• e.g., 99 vs 100 likes



Consistency Model Summary
• Consistency model specifies strength of abstraction

• Linearizability 🡪 Causal+ 🡪 Eventual
• Stronger hides more, but has worse performance

• When building an application, what do you need?
• Select system(s) with necessary consistency
• Always safe to pick stronger

• When building a system, what are your guarantees?
• Must design system such that they always hold
• Must confront fundamental tradeoffs with performance

• What is more important?
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