Consistency

A

COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Why Do We Build Systems?

* Abstract away complexity

Distributed Systems are Highly
Complex Internally

Sharding

)
)
>
J
b

v
v

2 8 B B

v

(Geo)-Replication

S

Concurrent access by many client

Distributed Systems are Highly

Complex Internally
Sharding, Geo-Replication, Concurrency

Distributed Systems are Highly

Complex Internally
Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this
complexity is abstracted away

Consistency Models

» Contract between a (distributed) system and the
applications that run on it

* A consistency model is a set of made
by the distributed system

* Not the interface, but defines of the
interface

Stronger vs Weaker Consistency

A

Application Code Application Code

Complexity

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System

Stronger vs Weaker Consistency

» Stronger consistency models
+ Easier to write applications

- System must hide many behaviors

- Might be slow

* Fundamental tradeoffs between consistency, availability, and performance
* (Discuss CAP, PRAM, SNOW in 418))

» Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications

+ System needs to hide few behaviors
+ Can be faster!

Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes

Linearizabllity ==
“Appears to be a Single Processor”

» External client submitting requests and getting responses from the system can’t tell this is not a
single processor!

» Consistent with some over all operations
* As though all requests processed one by one in some order
» Such that...

» Order preserves the between operations
* If operation A before operation B ,

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)

Real-Time Ordering Examples

P | wix=1)

A

Pg — wix=2) —

Mythical
Single
Processor

Real-Time Ordering Examples

P | wix=1)

A

Pg

Po | / w(x=3) =
Mythical \\‘ / g

Single

Processor

Linearizable?
P Fwix=1)

P F wix=2) 4
Pc |'WX3 'l
P F ro=2 =1k rv=3 = v

W4, Wy, Ih, W3, I3

| inearizable?

P wix=1)

Pa F wix=2)

Pc |'WX3 'l

Pp F ro=2 —F rv=3 — \/
Po Fr x1—||-rx2—| v

W1’ r1’ W2’ r2’ W3

| inearizable?

P wix=1)

P F wix=2) 4

Pe F wix=3)

Po F rg=2 =l rx=3 — v
Py F roo=1 =k rix=2 — v
P, F ro=2 = ro=2 — V4

Wy, Wy, Iy, Iy, W3

| inearizable?

JJJJ

Wiy, Iy, Wa, W3 I3

T
ﬂ,___n_l
x 7999
S X X X X
| S S W W
|_|L|___L|
_ T TTT
Al
I N — N
3 I T I
= ZZZE
- Lol L L
T
—
I
RS
=
-

SHHS X

._.
= 1T 1T T1TTT
V_M32231
ERE s

|_||_|L|L|L|L|L|

- - TTTTT

O ¢ dundia

e = XXX x¥

% 1 I I I N I

-

N -

= 1

O =

Q L

C L8 20

L

| inearizable?

P Fwix=1)

P F wix=2) 4

Pe F woes)

Pp Fwx=4) 4 F wix=s) 4

Pe F wix=6) -

Pr F r=2 =k =3 =k rv=6 =k rv=s 4/

W1, W2, I’2, W4, W3, I’3, W6, I’6, W5, I’5

OR

Wy, Wy, Wy, I, W3, I3, Wg, Ig, W5, I'5

OR

W1, W2, r2, W3, r3, W4, W6, r6, W5, r5

Linearizable?
Pk w1 4

P F wix=2) 4

Pe F woes)

Pp Fwx=4) 4 F wix=s) 4

Pe F wix=6) -

P, F rig=2 =k =5 =l -6 =l 05 4 X

| inearizable?

Pk w1 4

P F wix=2) 4

Pe F woes)

Pp Fwx=4 4 F w(x=5) -1

Pe F wix=6) -

Py |‘ r(x)=4 —”' r(x)=2 —”‘ r(x)=3 —"‘ r(x)=6 —l \/

W1’ W4’ r4’ W2’ r2’ WS’ r3’ W5’ W6’ r6

| inearizable?

P Fwix=1)
Py F wix=2)
P, Frg=t =4 X

Linearizabllity ==
“Appears to be a Single Processor”

» External client submitting requests and getting responses from the system can’t tell this is not a
single processor!

» Consistent with some over all operations
* As though all requests processed one by one in some order
» Such that...

» Order preserves the between operations
* If operation A before operation B ,

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)

How to Provide Linearizability?

1. Use a single processor ©)

1. Use “state-machine replication” on top of a
consensus protocol like Paxos

* Distributed system appears to be single processor that does
not fail!!

* Covered extensively in 418

Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes

Causal+ Consistency Informally

1. Potential causality: event a have a nust

causal effect on event b.
 Think: is there a path of information from a
to b?

« a and b done by the same entity (e.g., me)
* ais awrite and b is a read of that write
* + transitivity

2.

Causal+ Sufficient

Photo Added

Purchase
retained

1 Then 1

Error
404 - File not found

Deletion
retained

Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations

* e.g., Alice changes her password, Eve cannot login with
old password

Consistency Hierarchy

Linearizability Behaves like a single
1 processor
Causal+ Consistency Everyone sees related

operations in the same order

Eventual Consistency Anything goes

Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

» But, eventually consistent systems often try to provide
consistency and often do

* e.g., Facebook’s TAO system provided linearizable results
99.9994% of the time [Lu et al. SOSP “15]

» “Good enough” sometimes
* e.d., 99 vs 100 likes

Consistency Model Summary

« Consistency model specifies strength of abstraction
 Linearizability[@ Causal+ [Eventual
» Stronger hides more, but has worse performance

« When building an application, what do you need?
» Select system(s) with necessary consistency
» Always safe to pick stronger

« When building a system, what are your guarantees?
* Must design system such that they always hold

» Must confront fundamental tradeoffs with performance
« What is more important?

	Slide 1: Consistency
	Slide 2: Why Do We Build Systems?
	Slide 3: Distributed Systems are Highly Complex Internally
	Slide 4: Distributed Systems are Highly Complex Internally
	Slide 5: Distributed Systems are Highly Complex Internally
	Slide 6: Consistency Models
	Slide 7: Stronger vs Weaker Consistency
	Slide 8: Stronger vs Weaker Consistency
	Slide 9: Consistency Hierarchy
	Slide 10: Linearizability == “Appears to be a Single Processor”
	Slide 11: Real-Time Ordering Examples
	Slide 12: Real-Time Ordering Examples
	Slide 13: Linearizable?
	Slide 14: Linearizable?
	Slide 15: Linearizable?
	Slide 16: Linearizable?
	Slide 17: Linearizable?
	Slide 18: Linearizable?
	Slide 19: Linearizable?
	Slide 20: Linearizable?
	Slide 21: Linearizable?
	Slide 22: Linearizability == “Appears to be a Single Processor”
	Slide 23: How to Provide Linearizability?
	Slide 24: Consistency Hierarchy
	Slide 25: Causal+ Consistency Informally
	Slide 26: Causal+ Sufficient
	Slide 27: Causal+ Not Sufficient (Need Linearizability)
	Slide 28: Consistency Hierarchy
	Slide 29: Eventual Consistency
	Slide 30: Consistency Model Summary

