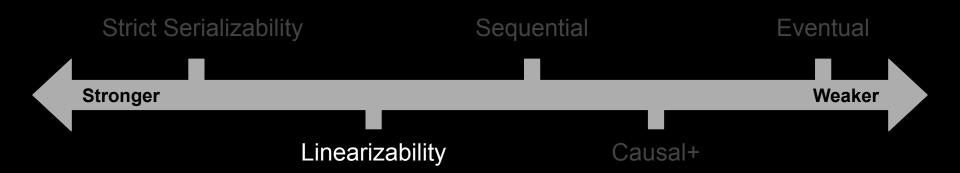

Consistency

Nov 10, 2022

Strict Serializability


- Transactions: operations that span multiple objects (e.g., keys in KV store) atomically commit (or abort).
- Total order: There exists some legal total ordering of transactions.
 - Legal (intuitively defined for strict serializability): in the total ordering, read operations "see" the latest write operation.
- Preserves real-time commit order: if txn A commits before txn B begins, then txn A occurs before txn B in the total order.
 - Write ops in a committed txn are visible to all future txns' read ops.
 - o Intuition: once a read "sees" a txn and commits, all future reads must also "see" that txn.

Pros: applications can easily reason about correctness of transactions.

Cons: strict serializability imposes high read and write latencies on system.

Strict Serializability Example

Strictly	Serializable?	Yes	Strictly	No	
P1:	$\{W(x)b, W(y)b\}$		P1:	$\{W(x)b, W(y)b\}$	
P2: {W(x	()a}		P2: {W(x	ː)a}	
P3:	$\{R(x)a\}$	$\{R(x)b\}$	P3:	${R(y)b}$	$\{R(x)a\}$
P4:	$\{R(x)b\}$	${R(y)b}$	P4:	$\{R(x)b\}$	${R(y)b}$

Linearizability


- Total order: There exists some legal total order of operations (not txns).
- Difference from strict serializability?
 - Single-object operations! No transactions!
- Preserves real-time ordering: if an operation A completes before operation B begins, then op A occurs before op B in the total order.
 - A completed write op is visible to all future read ops.
 - o Intuition: once a read "sees" a new write, all future reads must also "see" that write.

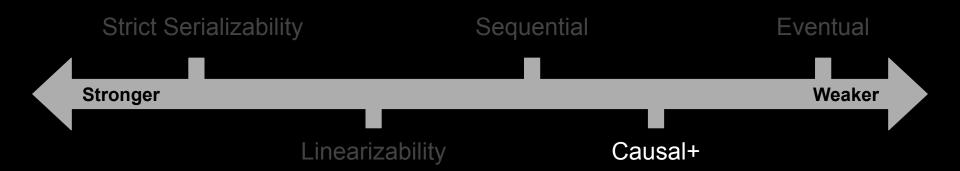
Pros: Easy to reason about correctness

Cons: High read and write latencies

Linearizability Example

Linearizable?		No		Line	Linearizable?		
P1:	W(x)a			P1:	W(x)a		
P2:	W(x)b			P2:	W(x)b		
P3:		R(x)b	R(x)a	P3:	R(x)	a R(x)b	
P4:		R(x)b	R(x)a	P4:	R(x)	R(x)b	

Sequential Consistency

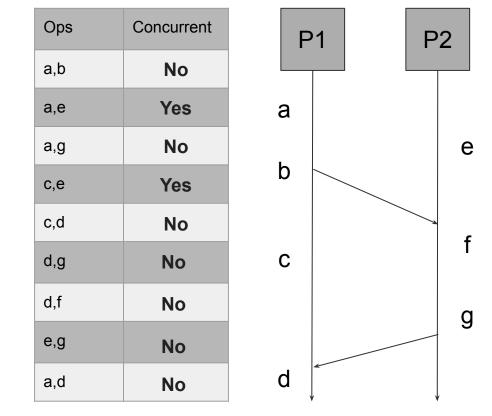

- Total order: there exists some legal total order of operations.
- Preserves process ordering: total order respects order of each process's operations.
- Difference from linearizability?
 - Order of ops across processes not determined by real-time

Pros: Can allow more orderings than linearizability → better performance.

Cons: Many possible sequential executions → increased application complexity

Sequential Consistency Example

No	Sequentially Consistent?				Sequentially Consistent? Yes					
			W(x)a	P1:				W(x)a	P1:	
		W(x)b		P2:			W(x)b		P2:	
R(x)a	R(x)b			P3:	R(x)a	R(x)b			P3:	
R(x)b	R(x)a			P4:	R(x)a	R(x)b			P4:	



Causal+ Consistency

- Partial order: order causally related ops the same way across all processes
- +: replicas' total order eventually converge.
- Difference from sequential consistency?
 - Only causally related ops need to be ordered: no guaranteed total order.
 - Concurrent ops may be ordered differently across different processes.

Pros: preserves causality while improving efficiency.

Cons: harder to reason about concurrency.

Causal+ Consistency Example

Causally+ Consistent? Yes

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a

P4: R(x)a

Causally+ Consistent? No

P1: W(x)a

P2: R(x)a W(x)b

P3: R(x)b R(x)a

P4: R(x)a

Eventual Consistency

- Eventual convergence: If no more writes, all replicas eventually agree.
- Difference from causal consistency?
 - Does not preserve causal relationships
 - Is the "+" in causal+.
- Frequently used with application conflict resolution, anti-entropy

Pros: highly available; think Bayou.

Cons: no safety guarantees, need conflict resolution

In a nutshell...

Strict Serializability: total order + real time guarantees over *transactions*Linearizability: total order + real time guarantees over *operations*Sequential consistency: total order + process order

Causal+ consistency: causally ordered + replicas eventually converge

Eventual consistency: tventually, everyone should agree on state

Exercise 1:

P1: {W(x) 1, W(y) 2} {R(y) 4}

P2: {W(x) 1, R(y) 4}

P3: {W(x) 0, W(y) 4}

P4: {R(x) 0} {R(x) 1}

Consistency Model:

Strictly Serializable Yes

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 2:

P1: W(x) 1 R(y) 4

P2: R(x) 1 R(y) 4

P3: R(x) 1 W(y) 4

P4: R(x) 1 R(y) 4

Consistency Model:

Linearizable Yes

Sequential Yes

Causal+ Yes

Eventual Yes

Exercise 3:

						Linearizable	No
P1: W(x) 3				W(y) 7		Sequential	Yes
P2:	W(x) 1					Causal+	Yes
P3:		R(x) 1	R(x) 3		R(y) 7	Eventual	Yes
P4:		R(x) 1	R(x) 3		R(y) 7		
P5:		R(x) 1	R(x) 3		R(y) 7		

Exercise 4:

					Consistency Model:	
					Linearizable	No
P1: W(x) 3				W(y) 7	Sequential	No
P2:	W(x) 1				Causal+	Yes
P3:		R(x) 1	R(x) 3	R(y) 7	Eventual	Yes
P4:		R(x) 3	R(x) 1	R(y) 7		
P5:		R(x) 1	R(x) 3	R(y) 7		

Exercise 5:

Consistency Model:

Linearizable No

Sequential No

Yes Causal+

Eventual Yes

P1: W(x) 1

P2: W(x) 3

W(x) 7 P3:

R(x) 7R(x) 3 R(x) 1 P4:

R(x) 1 R(x) 7R(x) 3 P5:

Exercise 6:

P1:

P2:

P3:

P4:

P5:

W(x) 1

W(x) 3

Consistency Model:

Linearizable No

Sequential No

Yes

Yes

Causal+

Eventual

R(x) 3 W(x) 7

> R(x) 3 R(x) 7R(x) 1

> R(x) 3 R(x) 1 R(x) 7

Exercise 7:

Linearizable No Sequential No Causal+ No P1: W(x) 1 Eventual Yes P2: R(x) 1 W(x) 3 P3: R(x) 3 W(x) 7 P4: R(x) 3 R(x) 7R(x) 1 R(x) 1 P5: R(x) 3 R(x) 7