
COS 217: Introduction to Programming Systems

Virtual Memory and Caching

Agenda

2

Virtual Memory
Virtual vs. physical memory
Page tables
Page faults

Storage and Locality
The storage hierarchy
Spatial and temporal locality
Caching

Effective Caching
Block size
Eviction policy
Order of operations

Private Address Space: Illusion

Each process sees main memory as
Huge: 264 = 16 EB (16 exabytes) of memory ≈	1019 bytes
Uniform: contiguous memory locations from 0 to 264-1

Process X Process Y

Memory
for

Process
X

0000000000000000

FFFFFFFFFFFFFFFF

Memory
for

Process
Y

0000000000000000

FFFFFFFFFFFFFFFF

3

Private Address Space: Reality

4

Process X VM Process Y VM

…FFFFFFFF unmapped

unmapped

Physical Memory

Disk

…00000000 …00000000

…FFFFFFFF

Memory is divided into pages
• At any time, some pages are in physical memory, some on disk
• OS and hardware swap pages between physical memory and disk
• Multiple processes share physical memory

Virtual & Physical Addresses

Question
• How do OS and hardware implement virtual memory?

Answer (part 1)
• Distinguish between virtual addresses and physical addresses

5

Virtual & Physical Addresses (cont.)

Virtual address
• Identifies a location in a particular process’s virtual memory

• Independent of size of physical memory
• Independent of other concurrent processes

• Consists of virtual page number & offset
• Used by application programs

Physical address
• Identifies a location in physical memory
• Consists of physical page number & offset
• Known only to OS and hardware

Note:
• Offset is same in virtual addr and corresponding physical addr

virtual page num offset

physical page num offset

6

ArmLab Virtual & Physical Addresses

On ArmLab:
• Each virtual address consists of 64 bits

• There are 264 bytes of virtual memory (per process)
• Each offset is 16 bits

• Each page consists of 216 bytes
• Each virtual page number consists of 64 – 16 = 48 bits

• There are 248 virtual pages

virtual page num offset

48 bits 16 bits

virtual
addr

physical page num offsetphysical
addr

7

ArmLab Virtual & Physical Addresses

On ArmLab:
• Each physical address consists of 37 bits

• There are 237 (128G) bytes of physical memory (per computer)
• Each offset is 16 bits

• Each page consists of 216 bytes
• Each physical page number consists of 37 – 16 = 21 bits

• There are 221 physical pages

virtual page num offset

48 bits 16 bits

virtual
addr

physical page num offsetphysical
addr

16 bits21 bits

8

Page Tables

Question
• How do OS and hardware implement virtual memory?

Answer (part 2)
• Maintain a page table for each process (stored in physical memory)

9

Page Tables (cont.)

Page table maps each
in-use virtual page to:
• A physical page, or
• A spot on disk

Virtual Page Num Physical Page Num
or Disk Addr

0 Physical page 5

1 (unmapped)

2 Spot X on disk

Page Table for Process 1234

… …
3 Physical page 8

10

Private Address Space Example 1

• Process executes instruction that references virtual memory
• CPU determines virtual page
• CPU checks if required virtual page is in physical memory: yes
• CPU does load/store from/to physical memory

15

Private Address Space Example 2

• Process executes instruction that references virtual memory
• CPU determines virtual page
• CPU checks if required virtual page is in physical memory: no!

Now what?

16

Page Faults

Question
• How do OS and hardware implement virtual memory?

Answer (part 3)
• Trigger a page fault for accesses to virtual pages that are swapped out (on disk)

17

Private Address Space Example 2

• Process executes instruction that references virtual memory
• CPU determines virtual page
• CPU checks if required virtual page is in physical memory: no!

• CPU generates page fault
• OS gains control of CPU
• OS (potentially) evicts some page from physical memory to

disk, loads required page from disk to physical memory
• OS returns control of CPU to process – to same instruction

• Process executes instruction that references virtual memory
• CPU checks if required virtual page is in physical memory: yes
• CPU does load/store from/to physical memory

Virtual memory enables the illusion of private address spaces
18

19

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

A.

B.

C.

D.

Let’s start by considering security…

Consequences of Virtual Memory

Memory protection among processes
• Process’s page table references only physical memory pages that the process currently owns
• Process can’t accidentally/maliciously affect physical memory used by another process

Memory protection within processes
• Permission bits in page-table entries indicate whether page is read-only, etc.
• Allows CPU to prohibit

• Writing to RODATA & TEXT sections
• Access to protected (OS owned) virtual memory

20

23

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

A.

B.

C.

D.

OK, so part of the answer is:

Security

But what about speed?

Consequences of Virtual Memory

But if we’re thinking about efficiency, isn’t that all outweighed by the need to do
multiple physical memory accesses (including page tables) for every virtual access?

Conceptually, umm, yes. But it’s not so bad in reality!

29

Agenda

30

Virtual Memory
Virtual vs. physical memory
Page tables
Page faults

Storage and Locality
The storage hierarchy
Spatial and temporal locality
Caching

Effective Caching
Block size
Eviction policy
Order of operations

Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage
(local disks, SSDs)

Larger
Slower

Cheaper
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

L1 cache

CPU registers hold words retrieved from
L1/L2/L3 cache

L1/L2/L3 cache holds cache lines
retrieved from main memory

Smaller
Faster

$$$$er
storage
devices Level 2 cache

Level 3 cache

31

Typical Storage Hierarchy

Factors to consider:
• Capacity
• Latency (how long to do a read)
• Bandwidth (how many bytes/sec can be read)

• Weakly correlated to latency: reading 1 MB from a hard disk
isn’t much slower than reading 1 byte

• Volatility
• Do data persist in the absence of power?

32

Typical Storage Hierarchy

Registers
• Latency: 0 cycles
• Capacity: 8-256 registers (31 general purpose registers in AArch64)

L1/L2/L3 Cache
• Latency: 1 to 40 cycles
• Capacity: 32KB to 32MB

Main memory (RAM)
• Latency: ~ 50-100 cycles

• 100 times slower than registers
• Capacity: GB

33
@christianw , @harrisonbroadbent

https://unsplash.com/@christianw
https://unsplash.com/@harrisonbroadbent

Typical Storage Hierarchy

Local secondary storage: disk drives

• Solid-State Disk (SSD):
• Flash memory (nonvolatile)
• Latency: 0.1 ms (~ 300k cycles)
• Capacity: 128 GB – 2 TB

• Hard Disk:
• Spinning magnetic platters, moving heads
• Latency: 10 ms (~ 30M cycles)
• Capacity: 1 – 10 TB

34
@benjaminlehman , Samsung Belgium

https://unsplash.com/@benjaminlehman
https://www.flickr.com/people/60952012@N06

Cache / RAM Latency

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec
35

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

Disks

1 ns

1 µs

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD

36

Typical Storage Hierarchy

Remote secondary storage (a.k.a. “the cloud”)
• Latency: tens of milliseconds

• Limited by the speed of light (and network bandwidth)
• Capacity: essentially unlimited

37
@TheDigitalArtist

https://pixabay.com/users/thedigitalartist-202249/

Storage Device Speed vs. Size

Facts:
• CPU needs sub-nanosecond access to data to run instructions at full speed
• Fast storage (sub-nanosecond) is small (100-1000 bytes)
• Big storage (gigabytes) is slow (15 nanoseconds)
• Huge storage (terabytes) is glacially slow (milliseconds)

Goal:
• Need many gigabytes of memory,
• but with fast (sub-nanosecond) average access time

Solution: locality allows caching
• Most programs exhibit good locality
• A program that exhibits good locality will benefit from proper caching,

which enables good average performance

38

Locality

Two kinds of locality
• Temporal locality

• If a program references item X now,
then it probably will reference X again soon

• Spatial locality
• If a program references item X now,

then it probably will reference item at address X±1 soon

Most programs exhibit good temporal and spatial locality

39

Locality Example
Locality example

Temporal locality
• Data: Whenever the CPU accesses sum,

it accesses sum again shortly thereafter
• Instructions: Whenever the CPU executes sum += a[i],

it executes sum += a[i] again shortly thereafter
Spatial locality

• Data: Whenever the CPU accesses a[i],
it accesses a[i+1] shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],
it executes i++ (which are the next machine language instructions) shortly thereafter

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
Typical code
(good overall locality)

40

Caching

Cache
• Fast access, small capacity storage device
• Acts as a staging area for a subset of the items in a slow access, large capacity storage device

Good locality + proper caching
⇒ Most storage accesses can be satisfied by cache
⇒ Overall storage performance improved

41

Caching in a Storage Hierarchy

42

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower device at
level k+1 is partitioned
into blocks

Level k+1:

4

Blocks copied
between levels

9 3
Smaller, faster device at
level k caches a subset of
the blocks from level k+1

Level k:
4 10

10

Cache Hits and Misses
Cache hit

• E.g., request for block 10
• Access block 10 at level k
• Fast!

Cache miss
• E.g., request for block 8
• Evict some block from level k
• Load block 8 from level k+1

to level k
• Access block 8 at level k
• Slow!

Caching goal:
• Maximize cache hits
• Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache
for level k+1

43

44

VM Effects on Security and Speed
Q: What effect does virtual memory have on the security and speed of processes?

Security Speed

A.

B.

C.

D.

So, with caching, we finally
arrive at the answer:

Security Speed

often little or
no change

Agenda

45

Virtual Memory
Virtual vs. physical memory
Page tables
Page faults

Storage and Locality
The storage hierarchy
Spatial and temporal locality
Caching

Effective Caching
Block size
Eviction policy
Order of operations

46

Do Exam Questions Exhibit Temporal Locality?
Here’s a real question from an old exam:

For caching in a memory hierarchy,
what is the best motivation for a larger cache block size?

A. Temporal Locality

B. Spatial Locality

C. Both

D. Neither

B
Spatial locality makes use of
subsequent data after a given
read, so having more data to
keep reading is a win.

Cache Block Size
Large block size:

+ do data transfer less often
+ take advantage of spatial locality
- longer time to complete data transfer
- less advantage of temporal locality

Small block size: the opposite
Typical: Lower in pyramid ⇒ slower data transfer ⇒ larger block sizes

Device Block Size
Register 8 bytes

L1/L2/L3 cache line 128 bytes

Main memory page 4KB or 64KB

Disk block 512 bytes to 4KB

Disk transfer block 4KB (4096 bytes) to
64MB (67108864 bytes)47

Cache Management

48

Device Managed by:
Registers
(cache of L1/L2/L3 cache and
main memory)

Compiler, using complex code-
analysis techniques
Assembly lang programmer

L1/L2/L3 cache
(cache of main memory)

Hardware, using simple
algorithms

Main memory
(cache of local sec storage)

Hardware and OS, using virtual
memory with complex algorithms
(since accessing disk is
expensive)

Local secondary storage (cache
of remote sec storage)

End user, by deciding which files
to download

Cache Eviction Policies

Best eviction policy: “oracle”
• Always evict a block that is never accessed again, or…
• Always evict the block accessed the furthest in the future
• Impossible in the general case

Worst eviction policy
• Always evict the block that will be accessed next!
• Causes thrashing
• Impossible in the general case!

49

Cache Eviction Policies

Reasonable eviction policy: LRU policy
• Evict the “Least Recently Used” (LRU) block

• With the assumption that it will not be used again (soon)
• Good for straight-line code
• (can be) bad for (large) loops
• Expensive to implement

• Often simpler approximations are used
• See Wikipedia “Page replacement algorithm” topic

50

Locality/Caching Example: Matrix Multiplication

Matrix multiplication
• Matrix = two-dimensional array
• Multiply n-by-n matrices A and B
• Store product in matrix C

Performance depends upon
• Effective use of caching (as implemented by system)
• Good locality (as implemented by you)

51

Two-dimensional arrays are stored in either row-major or column-major order

C uses row-major order
• Access in row order ⇒ good spatial locality
• Access in column order ⇒ poor spatial locality

Locality/Caching Example: Matrix Mult

18 19

21 22

20

23

24 25 26

0 1 2

0

1

2

18

19

21

22

20

23

24

25

26

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

18

21

19

22

24

25

20

23

26

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

row-major col-major

a

52

Locality/Caching Example: Matrix Mult

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects
• Good locality for A
• Bad locality for B
• Good locality for C

53

a b c

i
k

k

j

i

j

Locality/Caching Example: Matrix Mult

Poor cache effects
• Bad locality for A
• Bad locality for B
• Bad locality for C

for (j=0; j<n; j++)

for (k=0; k<n; k++)

for (i=0; i<n; i++)

c[i][j] += a[i][k] * b[k][j];

54

a b c

i
k

k

j

i

j

Locality/Caching Example: Matrix Mult

Good cache effects
• Good locality for A
• Good locality for B
• Good locality for C

for (i=0; i<n; i++)

for (k=0; k<n; k++)

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

55

a b c

k

j

i

j

i
k

Next time …
Getting started with ARM!

57
Lobsterthermidor , Raysonho

https://commons.wikimedia.org/wiki/User:Lobsterthermidor
https://commons.wikimedia.org/wiki/User:Raysonho

