
COS 217: Introduction to Programming Systems

Pointers, Arrays, and Strings

POINTERS

2

Here's to a good
new year to those
(presumably)
watching the
recording!

Pointers in C
So… what’s a pointer?

• A pointer is a variable

• Its value is the location of another variable

• “Dereference” or “follow” the pointer to read/write
the value at that location

Why is that a good idea?

• Copying large data structures is inefficient; copying pointers is fast

• x=y is a one-time copy: if y changes, x doesn’t “update”

• Parameters to functions are copied; but handy to be able to modify value

• Often need a handle to access dynamically allocated memory3

@rbw500

https://unsplash.com/@rbw500

Straight to the Point
Pointer types are target dependent

• Example: “int *pi;” – declares pi to be a pointer to an int
• We’ll see “generic” pointers later

Values are memory addresses
• … so size is architecture-dependent – 8 bytes on ARMv8
• NULL macro in stddef.h for special pointer guaranteed

not to point to any variable

Pointer-specific operators
• Address-of operator (&) – creates a pointer
• Dereference operator (*) – follows a pointer

Other pointer operators
• Assignment operator: =
• Relational operators: ==, !=, >, <=, etc.
• Arithmetic operators: +, –, ++, –=, !, etc.

4

dLookSay

pd

0 k

k+4

pi

k+4

k+12

k+20

iCyclic 142857 1 k

int iCyclic = 142857;
double dLookSay = 1.303577;
int *pi = NULL;
double *pd = &dLookSay;
pi = &iCyclic;
*pi = (int) *pd;

1.303577

0 1

1 0 1 0 1
<- same as *piAdams == *piBkn

To Illustrate the Point…
int iLife = 42;

int iJackie = 42;

int *piAdams = &iLife;

int *piBkn = &iJackie;

int **ppiMeta = &piAdams;

printf("%d %d\n",
piAdams == piBkn,
*piAdams == *piBkn);

printf(”%d %d %d %d %d\n",
ppiMeta == &piAdams,
ppiMeta == &piBkn,
*ppiMeta == piAdams,
*ppiMeta == piBkn,
**ppiMeta == *piBkn);5

iJackie

piBkn

42

k

k+4

k+8

piAdams

ppiMeta

k+4

k+8

k+16

k+24

iLife 42 k

6

What Points to What?

iJackie

piBkn

42

k

k+4

k+8

piAdams

ppiMeta

k+4

k+8

k+16

k+24

iLife 42 k

A: 0 0
B: 0 1
C: 1 0
D: 1 1

piAdams = piBkn;

printf("%d %d\n",
piAdams == piBkn,
*piAdams == *piBkn);

k+4

Pointer Declaration Gotcha
Pointer declarations can be written as follows: int* pi;

This is equivalent to: int *pi;

but the former seemingly emphasizes that the type of pi is ("int pointer")

Even though the first syntax may seem more natural, and you are welcome to use it,
it isn’t how the designers of C thought about pointer declarations.

So beware! This declaration: int* p1, p2;

really means: int *p1; int p2;

To declare both p1 and p2 as pointers, need: int* p1; int* p2;

Or, the following works: int *p1, *p2;8

ARRAYS

9

@zburival

https://unsplash.com/@zburival

Refresher: Java Arrays
• Always dynamically allocated
• Even when the values are known at

compile time (e.g. initializer lists)

• Access via a reference variable

public static void arrays() {
int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];
for(int c = 0;

c < arr2.length; c++)
arr2[c] = 3 * arr1[c];

int[] arr3 = arr1;

}

10
1 2 3

3length
3 6 9

3length
arr1

arr2

arr3

dynamically allocated
variables

local variables

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

11

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

12

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

13

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

14

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

15

arr1[0]

arr2[0]

1
2
3
3
6
9

arr1[1]
arr1[2]

arr2[1]
arr2[2]

Pointer/Array Interplay
• Array name alone can be

used as a pointer: arr vs. &arr[0]

16

int *arr3 = arr1;
/* or */

int *arr3 = &arr1[0];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

Pointer/Array Interplay
• Array name alone can be

used as a pointer: arr vs. &arr[0]

• Subscript notation can be used
with pointers

17

int *arr3 = arr1;
int i = arr3[1];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 3 * arr1[c];
int[] arr3 = arr1;

}

Pointer Arithmetic
Array indexing is actually a pointer operation!

arr[k] is syntactic sugar for *(arr + k)

Implies that pointer arithmetic is on elements, not bytes:

ptr ± k is implicitly
ptr ± (k * sizeof(*ptr)) bytes

This is consistent – subtracting two pointers gives you a count of elements, not bytes:

(ptr + k) – ptr == k

18

Arrays with Functions
Passing an array to a function
• Arrays “decay” to pointers

(the function parameter gets the
address of the array)

• Array length in signature is ignored
• sizeof “doesn’t work”

Returning an array from a function
• C doesn’t permit functions to have

arrays for return types
• Can return a pointer instead
• Be careful not to return an

address of a local variable
(since it will be deallocated!)

/* equivalent function signatures */
size_t count(int numbers[]);
size_t count(int *numbers);
size_t count(int numbers[5]);
{

/* always returns 8 */
return sizeof(numbers);

}

int[] getArr();
int *getArr();

19

STRINGS

20

Strings and String Literals in C
A string in C is a sequence of contiguous chars

• Terminated with null char ('\0') – not to be confused with the NULL pointer
• Double-quote syntax (e.g., "hello") to represent a string literal
• String literals can be used as special-case initializer lists
• No other language features for handling strings

• Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

21

How many
bytes?

Pointers for making a Lemon Gelatin Dessert
char string[10] =
{'H','e','l','l','o',0};

(or, equivalently)
char string[10] = "Hello";

char *pc = string+1;

printf(”Y%sw ", &string[1]);
printf("J%s!\n", pc);

22

string[0]

string[9]

‘h’
‘e’
‘l’
‘l’
‘o’
’\0’

Standard String Library
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
char h[] = "Hello, ";
char w[] = "world!";
char msg[LENGTH];
char *found;
if(sizeof(msg) <= strlen(h) + strlen(w))
return EXIT_FAILURE;

strcpy(msg, h);
strcat(msg, w);
if(strcmp(msg ,

"Hello, world!"))
return EXIT_FAILURE;

found = strstr(msg, ", ");
if(found – msg != 5)
return EXIT_FAILURE;

return EXIT_SUCCESS;
}

23

strlen(h) + strlen(w)

strcpy(msg, h);
strcat(msg, w);

strcmp(msg)

strstr(msg, ", ");

24

DIY (x2) – Already Available!

