
COS 217: Introduction to Programming Systems

Program Design Decisions
&

C Language Design (Logical Data)

Agenda
Simple C Programs

•charcount
• character I/O

•upper (ctype library)
• portability concerns
• char details

•upper1 (switch statements, enums, functions)
• internal documentation (i.e., comments)

Two big differences from Java
•Variable declarations
•Logical operators

2

Recall: The charcount Program
The program:

#include <stdio.h>
/* Write to stdout the number of

chars in stdin. Return 0. */
int main(void) {

int c;
int charCount = 0;
c = getchar();
while (c != EOF) {

charCount++;
c = getchar();

}
printf("%d\n", charCount);
return 0;

}

charcount.c

3

$ man stdio.h
NAME

stdio.h -- standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION
The <stdio.h> header shall define the following data types through typedef:

FILE A structure containing information about a file.
size_t As described in <stddef.h>.

The <stdio.h> header shall define the following macro which shall expand to an
integer constant expression with type int and a negative value:

EOF End-of-file return value.

The <stdio.h> header shall define the following macros which shall expand to
expressions of type ``pointer to FILE'' that point to the FILE objects associated,
respectively, with the standard error, input, and output streams:

stderr Standard error output stream.
stdin Standard input stream.
stdout Standard output stream.

stdio.h Features (excerpts)

4

$ man stdio.h
...
The following shall be declared as functions and may also be defined as macros.
Function prototypes shall be provided.

int fclose(FILE *);
int feof(FILE *);
int fflush(FILE *);
int fgetc(FILE *);
FILE *fopen(const char *restrict, const char *restrict);
int fprintf(FILE *restrict, const char *restrict, ...);
int fscanf(FILE *restrict, const char *restrict, ...);
int getc(FILE *);
int getchar(void);
int printf(const char *restrict, ...);
int putc(int, FILE *);
int putchar(int);
int scanf(const char *restrict, ...);

stdio.h Features (excerpts, continued)

5

Character Input/Output (I/O) in C
Design of C:

• Does not provide I/O facilities in the language
• Instead provides I/O facilities in standard library, declared in stdio.h

• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: …

Reading characters
• getchar() function with return type wider than char (specifically, int)
• Returns EOF (a special non-character int) to indicate failure
• Reminder: there is no such thing as "the EOF character”

Writing characters
• putchar() function accepting one parameter
• For symmetry with getchar(), parameter is an int6

c = getchar();
while (c != EOF)
{ charCount++;

c = getchar();
}

D.

7

iClicker Question
Q: There are other ways to charcount – which is best?

for (c = getchar(); c != EOF; c = getchar())
charCount++;A.

while ((c = getchar()) != EOF)
charCount++;B.

for (;;)
{ c = getchar();

if (c == EOF)
break;

charCount++;
}

C.

Functionality
• Read all chars from stdin
• Convert each lower-case alphabetic char to upper case

• Leave other kinds of chars alone
• Write result to stdout

What we need: character representation, I/O

upperDoes this work?
It seems to work.

stdin stdout
DOES THIS WORK?
IT SEEMS TO WORK.

8

Recall: The upper Program

The C char Data Type
char is 1 byte – designed to hold a single character, but used for more

Mapping from char values to characters on pretty much all machines:
ASCII (American Standard Code for Information Interchange)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 NUL HT LF

16
32 SP ! " # $ % & ' () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ^ _
96 ` a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ~

Notes: Many non-printing characters left blank in table above
Lower-case and upper-case letters are 32 apart

upper Version 1

#include <stdio.h>
int main(void)
{

int c;
while ((c = getchar()) != EOF) {

if ((c >= 97) && (c <= 122))
c -= 32;

putchar(c);
}
return 0;

}

What’s wrong?

10

EBCDIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 NUL HT
16
32 LF
48
64 SP . < (+ |
80 & ! $ *) ;
96 - / | , % _ > ?
112 ` : # @ ' = "
128 a b c d e f g h i {
144 j k l m n o p q r }
160 ~ s t u v w x y z
176
192 A B C D E F G H I
208 J K L M N O P Q R
224 \ S T U V W X Y Z
240 0 1 2 3 4 5 6 7 8 9

Extended Binary Coded Decimal Interchange Code

Pa
rt

ia
l m

ap

11

Character Literals
Single quote syntax: 'a' is a value of type char with the value 97

Use backslash to write special characters
• Examples (with numeric equivalents in ASCII, EBCDIC):

12

'a' the a character (97, 129)
'A' the A character (65, 193)
'0' the zero character (48, 240)
'\0' the NUL (nullbyte) character (0, 0)
'\n' the newline character (10, 37)
'\t' the horizontal tab character (9, 5)
'\\' the backslash character (92, 224)
'\'' the single quote character (39, 125)
'"' the double quote character (34, 127)

upper Version 2

#include <stdio.h>
int main(void)
{

int c;
while ((c = getchar()) != EOF) {

if ((c >= 'a') && (c <= 'z'))
c += 'A' - 'a';

putchar(c);
}
return 0;

}
What’s wrong now?

Arithmetic
on chars?

14

EBCDIC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 NUL HT
16
32 LF
48
64 SP . < (+ |
80 & ! $ *) ;
96 - / | , % _ > ?
112 ` : # @ ' = "
128 a b c d e f g h i {
144 j k l m n o p q r }
160 ~ s t u v w x y z
176
192 A B C D E F G H I
208 J K L M N O P Q R
224 \ S T U V W X Y Z
240 0 1 2 3 4 5 6 7 8 9

Extended Binary Coded Decimal Interchange Code

Note: Lower case not contiguous; same for upper case

Pa
rt

ia
l m

ap

15

upper Version 3

#include <stdio.h>
#include <ctype.h>
int main(void)
{

int c;
while ((c = getchar()) != EOF) {

if (islower(c))
c = toupper(c);

putchar(c);
}
return 0;

}
16

iClicker Question
Q: Is the if statement really necessary?

A. Gee, I don’t know.
Let me check
the man page
(again)!

#include <stdio.h>
#include <ctype.h>
int main(void)
{

int c;
while ((c = getchar()) != EOF) {

if (islower(c))
c = toupper(c);

putchar(c);
}
return 0;

}

17

$ man toupper
NAME

toupper, tolower - convert letter to upper or lower case

SYNOPSIS
#include <ctype.h>
int toupper(int c);
int tolower(int c);

DESCRIPTION
toupper() converts the letter c to upper case, if possible.
tolower() converts the letter c to lower case, if possible.

If c is not an unsigned char value, or EOF, the behavior of
these functions is undefined.

RETURN VALUE
The value returned is that of the converted letter,
or c if the conversion was not possible.

18

ctype.h Functions

iClicker Question
Q: Is the if statement really necessary?

A. Yes, necessary
for correctness.

B. Not necessary,
but I’d leave it in.

C. Not necessary,
and I’d get rid of it.

#include <stdio.h>
#include <ctype.h>
int main(void)
{

int c;
while ((c = getchar()) != EOF) {

if (islower(c))
c = toupper(c);

putchar(c);
}
return 0;

}

19

Aside: Unicode
Back in 1970s, English was the only language in the world[citation needed]

so we all used this alphabet [citation needed] :

ASCII:
American Standard Code
for Information Interchange

In the 21st century, it turns out
there are other languages!

20

When C was designed, characters fit into 8 (really 7) bits, so C’s chars are 8 bits long.

When Java was designed, Unicode fit into 16 bits, so Java’s chars are 16 bits long.

Then this happened:

Result: modern systems use variable length (UTF-8/16/32) encoding for Unicode.

Modern Unicode

21
https://xkcd.com/1953/

https://xkcd.com/1953/

Functionality
• Read all chars from stdin
• Capitalize the first letter of each word

• “cos 217 rocks”⇒ “Cos 217 Rocks”
• Write result to stdout

What we need: maintain extra information, namely “in a word” vs “not in a word”
• Need systematic way of reasoning about what to do with that information

22

upper1
cos 217 rocks
Does this work?
It seems to work.

stdin stdout
Cos 217 Rocks
Does This Work?
It Seems To Work.

Recall: The upper1 Program

upper1 Version 3
#include <stdio.h>
#include <ctype.h>
enum Statetype {NORMAL, INWORD};

enum Statetype handleNormalState(int c)
{

enum Statetype state;
if (isalpha(c)) {

putchar(toupper(c));
state = INWORD;

} else {
putchar(c);
state = NORMAL;

}
return state;

}

enum Statetype handleInwordState(int c)
{

enum Statetype state;
if (!isalpha(c)) {

putchar(c);
state = NORMAL;

} else {
putchar(c);
state = INWORD;

}
return state;

}

int main(void)
{

int c;
enum Statetype state = NORMAL;
while ((c = getchar()) != EOF) {

switch (state) {
case NORMAL:

state = handleNormalState(c);
break;

case INWORD:
state = handleInwordState(c);
break;

}
}
return 0;

}

That’s an A-.
What’s wrong?

23

upper1 Toward Final Version

Problem:
•The program works, but…
•No comments

Solution:
•Add (at least) function-level comments

24

Function Comments

Function comment should describe
what the function does (from the caller’s viewpoint)
•Input to the function

• Parameters, input streams
•Output from the function

• Return value, output streams, (call-by-reference parameters)

Function comment should not describe
how the function works

25

Function Comment Examples
Bad main() function comment

Describes how the function works

Good main() function comment

Describes what the function does
(from caller’s viewpoint)

Read a character from stdin. Depending upon
the current DFA state, pass the character to
an appropriate state-handling function. The
value returned by the state-handling function
is the next DFA state. Repeat until end-of-file.

Read text from stdin. Convert the first character
of each "word" to uppercase, where a word is a
sequence of characters. Write the result
to stdout. Return 0.

26

upper1 Final Comments
/* defines constants representing each state in the DFA */
enum Statetype {NORMAL, INWORD};

27

/* Implement the NORMAL state of the DFA. c is the current
DFA character. Write c or its uppercase equivalent to
stdout, as specified by the DFA. Return the next state. */

enum Statetype handleNormalState(int c) {

/* Implement the INWORD state of the DFA. c is the current
DFA character. Write c to stdout, as specified by the DFA.
Return the next state. */

enum Statetype handleInwordState(int c) {

/* Read text from stdin. Convert the first character of each
"word" to uppercase, where a word is a sequence of
letters. Write the result to stdout. Return 0. */

int main(void) {
/* Use a DFA approach. state indicates the DFA state. */
enum Statetype state = NORMAL;

Agenda
Simple C Programs

•charcount
• character I/O

•upper (ctype library)
• portability concerns
• char details

•upper1 (switch statements, enums, functions)
• internal documentation (i.e., comments)

Language Design: Two big differences from Java
•Variable declarations
•Logical operators

28

Declaring Variables

C requires variable declarations.

Motivation:
• Declaring variables allows compiler to check “spelling”
• Declaring variables allows compiler to allocate memory more efficiently
• Declaring variables’ types produces fewer surprises at runtime
• Declaring variables requires more from the programmer

• Extra verbiage
• Type foresight
• “Do what I mean, not what I say”

29

Declaring Variables

C requires variable declarations.
• Declaration statement specifies type of variable (and other attributes too)

Examples:

30

int i;
int i, j;
int i = 5;
const int i = 5; /* value of i cannot change */
static int i; /* covered later in course */
extern int i; /* covered later in course */

Declaring Variables

C requires variable declarations.
• Declaration statement specifies type of variable (and other attributes too)
• Unlike Java, declaration statements in C89 must appear before

any other kind of statement in compound statement

31

{
int i;
/* Non-declaration

stmts that use i. */
…
int j;
/* Non-declaration

stmts that use j. */
…

}

{
int i;
int j;
/* Non-declaration

stmts that use i. */
…
/* Non-declaration

stmts that use j. */
…

}

Illegal in C89 Legal in C89

Agenda
Simple C Programs

•upper (character data and I/O, ctype library)
• portability concerns

•upper1 (switch statements, enums, functions)
• DFA program design

Two big differences from Java
•Variable declarations
•Logical operators

32

Logical Data Types

•No separate logical or Boolean data type

•Represent logical data using type char or int
• Or any primitive type! :/

•Conventions:
• Statements (if, while, etc.) use 0 ⇒ FALSE, ≠0 ⇒ TRUE
• Relational operators (<, >, etc.) and logical operators (!, &&, ||) produce the result 0 or 1

33

@lunarts

https://unsplash.com/@lunarts

Logical Data Type Shortcuts
Using integers to represent logical data permits shortcuts

It also permits some really bad code…

34

…
int i;
…
if (i) /* same as (i != 0) */

statement1;
else

statement2;
…

i = (1 != 2) + (3 > 4);

iClicker Brainteaser
Q: What is i set to in the following code?

A. 0

B. 1

C. 2

D. 3

E. 4

35

i = (1 != 2) + (3 > 4);

Logical Data Type Dangers

Beware: the following code will cause loss of sleep

36

…
int i;
…
i = 0;
…
if (i = 5)

statement1;
…

What happens
in Java?

What happens
in C?

Next time … numbers! (Bigger than 127.)

37
Mick Haupt

https://unsplash.com/@rocinante_11

