

Routing Convergence

Lecture 10

Kyle Jamieson

COS 461: Computer Networks

Routing Changes

- Topology changes: new route to the same place
- Host mobility: route to a different place

Topology Changes

Two Types of Topology Changes

Planned

- Maintenance: shut down a node or link
- Energy savings: shut down a node or link
- Traffic engineering: change routing configuration

Unplanned Failures

Fiber cut,
 faulty equipment,
 power outage,
 software bugs, ...

Detecting Topology Changes

Beaconing

- Periodic "hello" messages in both directions
- Detect a failure after a few missed "hellos"

Performance trade-offs

- Detection delay
- Overhead on link bandwidth and CPU
- Likelihood of false detection

Routing Convergence: Link-State Routing

Convergence

- Control plane
 - All nodes have consistent information
- Data plane
 - All nodes forward packets in a consistent way

Transient Disruptions

Detection delay

- A node does not detect a failed link immediately
- ... and forwards data packets into a "blackhole"
- Depends on timeout for detecting lost hellos

Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Convergence Delay

- Sources of convergence delay
 - Detection latency
 - Updating control-plane information
 - Computing and install new forwarding tables
- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Slow Convergence in Distance-Vector Routing

Link cost decreases and recovery

- Node updates the distance table
- Rule: Least-cost path's cost changed? notify neighbors

DY = Distances known to Y

to:
$$X \mid 4 \mid 6$$

to:
$$X = \begin{bmatrix} 0^{2} & 0^{10} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Link cost decreases and recovery

- Node updates the distance table
- Rule: Least-cost path's cost changed? notify neighbors

- Link cost decreases and recovery
- 50 T
- Node updates the distance table
- Rule: Least-cost path's cost changed? notify neighbors

- Link cost increases and failures
 - "Count to infinity" problem!

Distance Vector: Link Cost Increase

- Link cost increases and failures
 - "Count to infinity" problem!

Distance Vector: Poison Reverse

If Z routes through Y to X,
 then Z tells Y its (Z's) distance to X is ∞
 (so Y won't route to X via Z)

Distance Vector: Poison Reverse

Can still have problems in larger networks

- 1. A and B use ACD and BCD, so A and B both "poison" to C.
- 2. But when CD withdrawn (cost goes to infinity), B switches to BACD, so BC no longer poisoned to C.
- 3. C then starts using CBACD. Loop.

Redefining Infinity

- Avoid "counting to infinity"
 - By making "infinity" smaller!
- Routing Information Protocol (RIP)
 - All links have cost 1
 - Valid path distances of 1 through 15
 - ... with 16 representing infinity
- Used mainly in small networks

Reducing Convergence Time With Path-Vector Routing

(e.g.: Border Gateway Protocol)

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

BGP Session Failure

- BGP runs over TCP
 - BGP only sends updates when changes occur
 - TCP doesn't detect lost connectivity on its own
- Detecting a failure
 - Keep-alive: 60 seconds
 - Hold timer: 180 seconds
- Reacting to a failure
 - Discard all routes learned from neighbor
 - Send new updates for any routes that change

Routing Change: Before and After

Routing Change: Path Exploration

• AS 1

- Delete the route (1,0)
- Switch to next route (1,2,0)
- Send route (1,2,0) to AS 3

AS 3

- Sees (1,2,0) replace (1,0)
- Compares to route (2,0)
- Switches to using AS 2

Routing Change: Path Exploration

- Initial: All AS use direct
- Then destination 0 dies
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn
- How many intermediate routes following (2,0) withdrawal until no route known to 2?

$$(2,0) \rightarrow (2,1,0) \rightarrow (2,3,0) \rightarrow (2,1,3,0) \rightarrow \text{null}$$

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths to find highest-ranked available path
- Fortunately, in practice
 - Most popular destinations have stable BGP routes
 - Most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 - Can be tens of seconds to tens of minutes

BGP Instability

Stable Paths Problem (SPP) Instance

Node

- BGP-speaking router
- Node 0 is destination

Edge

- BGP adjacency
- Permitted paths
 - Set of routes to 0 at each node
 - Ranking of the paths

SPP Solution

Solution is:

Path assignments per node

Can be the "null" path

- If node u has path uwP
 - {u,w} is edge in graph
 - w is assigned path wP
- Each node is assigned
 - Highest ranked path consistent with its neighbors

Stable Paths Problem (SPP) Instance

1 will use a direct path to 0
 (Y) True (M) False

5 has a path to 0(Y) True (M) False

Stable Paths Problem (SPP) Instance

1 will use a direct path to 0
(Y) True (M) False

5 has a path to 0(Y) True (M) False

An SPP May Have No Solution

Avoiding BGP Instability

- Detecting conflicting policies
 - Computationally expensive
 - Requires too much cooperation
- Detecting oscillations
 - Observing the repetitive BGP routing messages
- Restricted routing policies and topologies
 - Policies based on business relationships

Conclusion

- The only constant is change
 - Planned topology and configuration changes
 - Unplanned failure and recovery
- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets
- Routing instability
 - Permanent conflicts in routing policy
 - Leading to bi-stability or oscillation