
Transport Layer

Kyle Jamieson
COS 461: Computer Networks

www.cs.princeton.edu/courses/archive/fall21/cos461

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages

IP Protocol Stack: Key Abstractions

• Transport layer is where we:
– Provide applications with good abstractions

• Without support or feedback from the network

2

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages

Link

Network

Transport

Application

Transport Protocols

• Logical communication between processes
– Sender divides a message into segments
–Receiver reassembles segments into message

• Transport services
– (De)multiplexing packets
–Detecting corrupted data
–Optionally: reliable delivery, flow control, …

3

User Datagram Protocol (UDP)
• Lightweight communication

between processes
– Send and receive messages
– Avoid overhead of ordered,

reliable delivery
• No connection setup delay, no

in-kernel connection state

• Used by popular apps
– Query/response for DNS
– Real-time data in VoIP

SRC port DST port

checksum length

DATA

4

8 byte header

Advantages of UDP
• Fine-grain control
– UDP sends as soon as the application writes

• No connection set-up delay
– UDP sends without establishing a connection

• No connection state in host OS
– No buffers, parameters, sequence #s, etc.

• Small header overhead
– UDP header is only eight-bytes long

5

Two Basic Transport Features
• Demultiplexing: port numbers

• Error detection: checksums

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)
OSClient

IP payload

detect corruption
6

Transmission Control Protocol (TCP)

• Stream-of-bytes service
– Sends and receives a

stream of bytes

• Reliable, in-order delivery
– Corruption: checksums
– Detect loss/reordering:

sequence numbers
– Reliable delivery:

acknowledgments and
retransmissions

• Connection oriented
– Explicit set-up and tear-

down of TCP connection

• Flow control
– Prevent overflow of the

receiver’s buffer space

• Congestion control
– Adapt to network

congestion for the
greater good

7

8

Breaking a Stream of Bytes
into TCP Segments

TCP “Stream of Bytes” Service

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

B
yte 80

9

…Emulated Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application

10

TCP Segment
• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes on an Ethernet link

• TCP packet
– IP packet with a TCP header and data inside
– TCP header is typically 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream:

MTU (1500) - IP header (20) - TCP header (20)

IP Hdr
IP Data

TCP HdrTCP Data (segment)

11

Sequence Number
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence
number =

1st byte

B
yte 81

12

Reliable Delivery on a Lossy
Channel With Bit Errors

13

Challenges of Reliable Data Transfer
• Over a perfectly reliable channel: Done

• Over a channel with bit errors
– Receiver detects errors and requests retransmission

• Over a lossy channel with bit errors
– Some data missing, others corrupted
– Receiver cannot easily detect loss

• Over a channel that may reorder packets
– Receiver cannot easily distinguish loss vs. out-of-order

14

An Analogy
• Alice and Bob are talking
– What if Alice couldn’t understand Bob?
– Bob asks Alice to repeat what she said

• What if Bob hasn’t heard Alice for a while?
– Is Alice just being quiet? Has she lost reception?
– How long should Bob just keep on talking?
– Maybe Alice should periodically say “uh huh”
– … or Bob should ask “Can you hear me now?”

15

Take-Aways from the Example
• Acknowledgments from receiver
– Positive: “okay” or “uh huh” or “ACK”
– Negative: “please repeat that” or “NACK”

• Retransmission by the sender
– After not receiving an “ACK”
– After receiving a “NACK
– You can use both (as TCP does implicitly)

• Timeout by the sender (“stop and wait”)
– Don’t wait forever without some acknowledgment

16

TCP Support for Reliable Delivery
• Detect bit errors: checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Detect missing data: sequence number
– Used to detect a gap in the stream of bytes
– ... and for putting the data back in order

• Recover from lost data: retransmission
– Sender retransmits lost or corrupted data
– Two main ways to detect lost packets

17

TCP Acknowledgments
Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number)

Sequence
number =

1st byte

ACK sequence
number = next
expected byte

18

Automatic Repeat reQuest (ARQ)

• ACK and timeouts
– Receiver sends ACK when

it receives packet
– Sender waits for ACK

and times out

• Simplest ARQ protocol
– Stop and wait
– Send a packet, stop and

wait until ACK arrives
19

Time

Packet

ACKTi
m

eo
ut

Sender Receiver

Initial Sequence Number (ISN)
• Sequence number for the very first byte
– E.g., Why not a de facto ISN of 0?

• Practical issue: reuse of port numbers
– Port numbers must (eventually) get used again
– … and an old packet may still be in flight
– … and associated with the new connection

• So, TCP must change the ISN over time
– Set from a 32-bit clock that ticks every 4 microsec
– … which wraps around once every 4.55 hours!

20

Quick TCP Math
• Initial Seq No = 501. Sender sends 4500 bytes

successfully acknowledged. Next sequence
number to send is:

(Y) 5000 (M) 5001 (C) 5002

• Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000 (C) 6001

21

Quick TCP Math
• Initial Seq No = 501. Sender sends 4500 bytes

successfully acknowledged. Next sequence
number to send is:

(Y) 5000 (M) 5001 (C) 5002

• Next 1000 byte TCP segment received.
Receiver acknowledges with ACK number:

(Y) 5001 (M) 6000 (C) 6001

22

23

Flow Control:
TCP Sliding Window

Motivation for Sliding Window
• Stop-and-wait is inefficient

– Only one TCP segment is “in flight” at a time

• Consider: 1.5 Mbps link with 50 ms round-trip-time (RTT)
– Assume TCP segment size of 1 KB (8 Kbits)

– 8 Kbits/segment at 50 msec/segment à 160 Kbps

– That’s 11% of the capacity of 1.5 Mbps link

24

Sliding Window
• Allow a larger amount of data “in flight”

– Allow sender to get ahead of the receiver
– … though not too far ahead

Sending application Receiving application

Last byte ACKed
Last byte sent

TCP buffer in OS

Next byte expected

Last byte written Last byte read

Last byte received 25

TCP buffer in OS

Sliding Window
• Receive window size

– Amount that can be sent without acknowledgment
– Receiver must be able to store this amount of data

• Receiver tells the sender the window
– Tells the sender the amount of free space left

Last byte ACKed
Last byte sent

Next byte expected
Last byte received 26

TCP buffer in OSWindow Size

OK to send
}

TCP

Optimizing Retransmissions

27

Reasons for Retransmission

28

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut
Packet

ACK

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK
– Too short: wasted retransmissions
– Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT
– Expect ACK to arrive after an “round-trip time”
– … plus a fudge factor to account for queuing

• But, how does the sender know the RTT?
– Running average of delay to receive an ACK

29

Still, timeouts are slow (≈RTT)
• When packet n is lost…
– … packets n+1, n+2, and so on may get through

• Exploit the ACKs of these packets
– ACK says receiver is still awaiting nth packet
– Duplicate ACKs suggest later packets arrived
– Sender uses “duplicate ACKs” as a hint

• Fast retransmission
– Retransmit after “triple duplicate ACK”

30

Effectiveness of Fast Retransmit
• When does Fast Retransmit work best?
–High likelihood of many packets in flight
– Long data transfers, large window size, …

• Implications for Web traffic
–Many Web transfers are short (e.g., 10 packets)
• So, often there aren’t many packets in flight

–Making fast retransmit is less likely to “kick in”
• Forcing users to click “reload” more often…

31

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open) to the host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

33

SYN

SYN ACK

ACK
Data

A B

Data

Each host tells
its ISN to the
other host.

SYN Loss and Web Downloads
• Upon sending SYN, sender sets a timer
– If SYN lost, timer expires before SYN-ACK received
– Sender retransmits SYN

• How should the TCP sender set the timer?
– No idea how far away the receiver is
– Some TCPs use default of 3 or 6 seconds

• Implications for web download
– User gets impatient and hits reload
– … Users aborts connection, initiates new socket
– Essentially, forces a fast send of a new SYN! 38

Tearing Down the Connection

• Closing (each end of) the connection
– Finish (FIN) to close and receive remaining bytes
– And other host sends a FIN ACK to acknowledge
– Reset (RST) to close and not receive remaining bytes

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B
FIN

A
CK

39

Sending/Receiving the FIN Packet

• Sending a FIN: close()
– Process is done sending

data via socket

– Process invokes “close()”

– Once TCP has sent all
the outstanding bytes…

– … then TCP sends a FIN

• Receiving a FIN: EOF
– Process is reading

data from socket

– Eventually, read call
returns an EOF

40

