Why Facebook, Instagram, and WhatsApp All Went Down Today

The problem relates to something called BGP routing, and it could take a while longer to resolve.

Class Meeting: Lectures 9 & 10: Routing and Convergence Kyle Jamieson COS 461: Computer Networks

Routing vs. Forwarding

- Routing: control plane
 - -Computing paths the packets will follow
 - Routers talk among themselves

\rightarrow Create the forwarding tables

• Forwarding: data plane

-Directing a data packet to an outgoing link

– Using the forwarding tables

Shortest-Path Problem

- Compute: *path costs* to all nodes
 - From a given source *u*, to all other nodes
 - Edges: *Cost* of the path through each outgoing link
 - Next hop along the least-cost path to s

Link State Routing

Link State: Dijkstra's Algorithm

- Flood the topology information to all nodes
- Each node computes shortest paths to other nodes

Loop

Used in OSPF and IS-IS

Link-State Routing Example

Link-State Routing Example (cont.)

Link State: Shortest-Path Tree

- Shortest-path tree from u
 Forwarding table at u

dest	link
V	(u,v)
W	(u,w)
Х	(u,w)
У	(u <i>,</i> v)
Z	(u <i>,</i> v)
S	(u,w)
t	(u,w)
	-

Link State: Shortest-Path Tree

Find shortest path from t to v

Forwarding table entry at t?
A. (t,x)

C. (t, v)

Link State: Shortest-Path Tree

Find shortest path **from** *t* **to** *v*

Distance from *t* to *v*? A.) 5 B.) 6 C.) 7 D.) 8

E.) 9

Routing Convergence: Link-State Routing

Transient Disruptions

- Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a "blackhole"
 - Depends on timeout for detecting lost hellos

Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Distance Vector Routing

Distance Vector: Bellman-Ford Algo

Define distances at each node x

 $- d_x(y) = cost of least-cost path from x to y$

- Update distances based on neighbors
 - $d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

Distance Vector Example

$$d_{y}(z) = 1$$
$$d_{x}(z) = 4$$

 $d_v(z) = min\{ 2+d_y(z), 1+d_x(z) \}$ = 3

Distance Vector Example (Cont.)

 $d_{w}(z) = \min\{ 1+d_{x}(z),$ $4+d_{s}(z),$ $2+d_{u}(z) \}$ = 5

d_u(z) = ??? A.) 5 (via v) B.) 6 (via v) C.) 6 (via w) D.) 7 (via w) Slow Convergence in Distance-Vector Routing

- Link cost decreases and recovery
 - Node updates the distance table

 \mathbf{t}_0

– Rule: Least-cost path's cost changed? notify neighbors

t₁

D^Y = Distances known to Y

 \mathbf{t}_2

- Link cost decreases and recovery
 - Node updates the distance table
- 50
- **Rule:** Least-cost path's cost changed? notify neighbors

 D^{Y} = Distances known to Y

- Link cost decreases and recovery
 - Node updates the distance table

Rule: Least-cost path's cost changed? notify neighbors

"good news travels fast"

Link cost increases and failures

 "Count to infinity" problem!

Distance Vector: Link Cost Increase

Link cost increases and failures

– "Count to infinity" problem!

Distance Vector: Poison Reverse

Path Vector Routing

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Path-Vector: Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Which paths to advertise?

Node 2 prefers "2, 3, 1" over "2, 1"

Node 1 doesn't let 3 hear the path "1, 2"

Reducing Convergence Time With Path-Vector Routing

(e.g.: Border Gateway Protocol)

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

BGP Session Failure

- BGP runs over TCP
 - BGP only sends updates when changes occur

TCP doesn't detect lost connectivity on its own

AS1

Detecting a failure

– Keep-alive: 60 seconds

– Hold timer: 180 seconds

- Reacting to a failure
 - Discard all routes learned from neighbor
 - Send new updates for any routes that change

AS2

Routing Change: Before and After

Routing Change: Path Exploration

- AS 1
 - Delete the route (1,0)
 - Switch to next route (1,2,0)
 - Send route (1,2,0) to AS 3
- AS 3
 - Sees (1,2,0) replace (1,0)
 - Compares to route (2,0)
 - Switches to using AS 2

(2,0)

2

(3, 2, 0)

1,2,0

Routing Change: Path Exploration

1,0

(1,2,0)

(1,3,0)

- Initial: All AS use direct
- Then destination 0 dies
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn
- How many intermediate routes following (2,0) withdrawal until no route known to 2?

(A.) 0; (B.) 1; (C.) 2; (D.) 3; (E.) 4

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths to find highest-ranked available path
- Fortunately, in practice
 - Most popular destinations have stable BGP routes
 - Most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 Can be tens of seconds to tens of minutes

Conclusion

- Routing protocols cope with change
 - Planned topology and configuration changes
 - Unplanned failure and recovery

- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets