
Class Meeting, Lectures 7 & 8:
Congestion, Queues, & Middleboxes

Kyle Jamieson
COS 461: Computer Networks

www.cs.princeton.edu/courses/archive/fall21/cos461
[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

2

Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes

3

Mean and Variance:
Jacobson’s RTT Estimator

• Above link load of 30% at router, β× RTTi will
retransmit too early!

• Response to increasing load: waste bandwidth on
duplicate packets

• Result: congestion collapse!

• [Jacobson]: estimate vi, mean deviation (EWMA
of |mi – RTTi|), stand-in for variance

vi = vi-1× (1-γ) + γ× |mi-RTTi|
• Modern TCPs use RTOi = RTTi + 4vi

Jacobson, V. and Karels, M., Congestion Avoidance and Control, SIGCOMM 1988.

http://www-nrg.ee.lbl.gov/papers/congavoid.pdf

4

Retransmit Behavior

• Original TCP (pre-AIMD design), before
[Jacobson 88]:
– at start of connection, send full window of packets
– retransmit each packet immediately after its timer

expires

• Result: window-sized bursts of packets sent into
network

5

Pre-Jacobson TCP (Obsolete!)

• Time-sequence plot taken at sender
• Bursts of packets: vertical lines
• Spurious retransmits: repeats at same y value
• Dashed line: available 20 Kbps capacity

6

Concept: “Self-Clocking” Conservation of Packets

• Goal: “self-clocking” transmission paced by ACKs
– each ACK returns, one data packet sent
– spacing of returning ACKs: matches spacing of packets in

time at slowest link on path Pb

7

Review: Reaching Equilibrium via Slow Start

• At connection start, sender sets congestion window
size, cwnd, to pktSize (one packet’s worth of bytes),
not whole window

• Sender sends up to minimum of receiver’s advertised
window size W and cwnd

• Upon return of each ACK until receiver’s advertised
window size reached, increase cwnd by pktSize bytes

• “Slow” means exponential window increase!
• Takes log2(W/pktSize) RTTs to reach receiver’s

advertised window size W

8

Post-Jacobson TCP: Slow Start and
Mean+Variance RTT Estimator

• Time-sequence plot at sender; dash line = available capacity
• “Slower” start
• No spurious retransmits

9

Congestion Requires Slowing Senders

• Recall: bigger buffers cannot prevent congestion
• Senders must slow to alleviate congestion
• Absence of ACKs implicitly indicates congestion
• TCP sender’s window size determines sending rate
• Recall: correct window size is bottleneck bandwidth-

delay product
• How can sender learn this value?
– Search for it, by adapting window size
– Feedback from network: ACKs return (window OK) or do

not return (window too big)

10

AIMD in Action

• Sender searches for correct window size

11

Why AIMD?

• Other control rules possible
– E.g., MIMD, AIAD, …

• Recall goals:
– Links fully utilized (efficient)
– Users share resources fairly

• TCP adapts all flows’ window sizes
independently

• Must choose a control that will always
converge to an efficient and fair allocation of
windows

12

Chiu-Jain Phase Plots

• Consider two users
sharing a bottleneck link

• Plot bandwidths
allocated to each

• Efficiency Line: sum of
two users’ rates =
bottleneck capacity

• Fairness Line: two users’
rates equal

• Equi-Fairness Line: ratio
of two users’ rates fixed

User 1 (bps)

U
se

r 2
 (

bp
s)

Efficiency Line

Fairness Line

Overload

Underload

Equi-Fairness Line
(MI)

Optimum

(AI)

13

Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes

Context: Where are the queues?
The Routers!

14

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

data plane
control plane

Problem: How to allocate egress router bandwidth to flows?

Weighted Fair Queuing (WFQ)
• Weighted fair queuing
– Assign each queue a fraction of the link bandwidth
– Rotate across queues on a small time scale

• WFQ results in max-min fairness
– Maximizes the least rate that any flow gets

G G G

50% red, 25% blue, 25% green(G)

15

Bit-by-Bit “Fluid” Fair Queuing (FQ)

Flow 1

Flow NClassification

Bit-by-bit round robin

Question: What is a “flow”?
Flow 5-tuple: protocol, IP source/dest, port src/dest

Question: How to choose weights?
Protocol class, bit markings, prefixes, etc.

16

Bit-by-Bit Weighted FQ

• Flows allocated different rates by servicing different
number of bits for each flow during each round.

1
w1 = 0.1

w3 = 0.3
R1 C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

17

Packet vs. “Fluid” System

• Bit-by-bit FQ is not implementable:
…In real packet-based systems:
– One queue is served at any given time
– Packet transmission cannot be preempted

• Goal: A packet scheme close to fluid system
– Bound performance w.r.t. fluid system

18

Packet-by-packet Fair Queuing
(Weighted Fair Queuing)

Copes better with variable size packets & weights

Key Idea:
1. Determine the finish time of packets in bit-by-bit

system, assuming no more arrivals

2. Serve packets in order of finish times

19

Implementing WFQ

Challenge: Determining finish time is hard

Idea: Don’t need finish time. Need finish order.

The finish order is a lot easier to calculate.

20

Finish order
Let Li be the length of the packet at the head of queue i
In what order do these packets finish?

21

1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

Increasing Li/wi

Does not change with future packet arrivals!

Bit-by-bit System Round

Round – One complete cycle through all the queues
sending wi bits per queue

22

1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

w1 = 1

w3 = 3

w4 = 3

w2 = 3

Question: How many rounds does it take to
serve a packet of length L from flow i?

Bit-by-bit System Round

Round – One complete cycle through all the queues
sending wi bits per queue

23

1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

w1 = 1

w3 = 3

w4 = 3

w2 = 3

Packet of length L takes L/wi rounds to serve

Round (aka. “Virtual Time”)
Implementation of WFQ

24

Question: What is finish round of kth packet – Fik?

Round (aka “Virtual Time”)
Implementation of WFQ

25

Assign a start/finish round to each packet at arrival
à serve packets in order of finish rounds

Fi
k−1

R(a)

(Flow i backlogged)

k ……k-1

(Flow i empty)

k

Si
k =

Suppose kth packet of flow i arrives at time a

Start round
of kth packet

Finish round
of (k-1)st packet

Round number
at time a

Putting it All Together

Fi
k = Si

k +
Li
k

iw

Si
k =max(Fi

k−1,R(a))

For kth packet of flow i arriving at time a:

26

Simple approximation:
Set R(a) to start or finish round
of packet currently in service

WFQ ::= Serve packets in order of finish round

27

Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes

28

End-to-end violation: Firewalls

• Box in middle of network that blocks “malicious” traffic
– End-host software often vulnerable to remote-exploit malware
– Users are naive, don’t keep systems patched and up-to-date

• Firewalls clearly violate the e2e principle
– Endpoints are capable of deciding what traffic to ignore
– Firewall entangled with design of network and higher protocol

layers and apps, and vice-versa
• Yet, we probably do need firewalls

Our network
X
FirewallInternet

Network Address Translation (NAT):
Principled Objections

• Routers are not supposed to look at port #s
– Network layer should care only about IP header
– … and not be looking at the port numbers at all

• NAT violates the end-to-end argument
– Network nodes should not modify the packets

• IPv6 is a cleaner solution
– Better to migrate than to limp along with a hack

29

That’s what happens when network
puts power in hands of end users!

Middleboxes: Conclusions

• Middleboxes address important problems
– Getting by with fewer IP addresses
– Blocking unwanted traffic
– Making fair use of network resources
– Improving end-to-end performance

• Middleboxes cause problems of their own
– No longer globally unique IP addresses
– Cannot assume network simply delivers packets

30

Next Up in 461

Next Class Meeting
Lectures 9 (Routing Algorithms) and

10 (Routing Convergence)

Precepts this Thursday and Friday

31

