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Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes
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Mean and Variance:
Jacobson’s RTT Estimator

• Above link load of 30% at router, β× RTTi will 
retransmit too early!

• Response to increasing load: waste bandwidth on 
duplicate packets

• Result: congestion collapse!

• [Jacobson]: estimate vi, mean deviation (EWMA 
of |mi – RTTi|), stand-in for variance

vi = vi-1× (1-γ) + γ× |mi-RTTi|
• Modern TCPs use RTOi = RTTi + 4vi

Jacobson, V. and Karels, M., Congestion Avoidance and Control, SIGCOMM 1988.

http://www-nrg.ee.lbl.gov/papers/congavoid.pdf
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Retransmit Behavior

• Original TCP (pre-AIMD design), before 
[Jacobson 88]:
– at start of connection, send full window of packets
– retransmit each packet immediately after its timer 

expires

• Result: window-sized bursts of packets sent into 
network
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Pre-Jacobson TCP (Obsolete!)

• Time-sequence plot taken at sender 
• Bursts of packets: vertical lines
• Spurious retransmits: repeats at same y value
• Dashed line: available 20 Kbps capacity
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Concept: “Self-Clocking” Conservation of Packets

• Goal: “self-clocking” transmission paced by ACKs
– each ACK returns, one data packet sent
– spacing of returning ACKs: matches spacing of packets in 

time at slowest link on path Pb
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Review: Reaching Equilibrium via Slow Start

• At connection start, sender sets congestion window 
size, cwnd, to pktSize (one packet’s worth of bytes), 
not whole window

• Sender sends up to minimum of receiver’s advertised 
window size W and cwnd

• Upon return of each ACK until receiver’s advertised 
window size reached, increase cwnd by pktSize bytes

• “Slow” means exponential window increase!
• Takes log2(W/pktSize) RTTs to reach receiver’s 

advertised window size W
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Post-Jacobson TCP: Slow Start and 
Mean+Variance RTT Estimator

• Time-sequence plot at sender; dash line = available capacity
• “Slower” start
• No spurious retransmits
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Congestion Requires Slowing Senders

• Recall: bigger buffers cannot prevent congestion
• Senders must slow to alleviate congestion
• Absence of ACKs implicitly indicates congestion
• TCP sender’s window size determines sending rate
• Recall: correct window size is bottleneck bandwidth-

delay product
• How can sender learn this value?
– Search for it, by adapting window size
– Feedback from network: ACKs return (window OK) or do 

not return (window too big)
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AIMD in Action

• Sender searches for correct window size
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Why AIMD?

• Other control rules possible
– E.g., MIMD, AIAD, …

• Recall goals:
– Links fully utilized (efficient)
– Users share resources fairly

• TCP adapts all flows’ window sizes 
independently

• Must choose a control that will always 
converge to an efficient and fair allocation of 
windows
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Chiu-Jain Phase Plots

• Consider two users 
sharing a bottleneck link

• Plot bandwidths 
allocated to each

• Efficiency Line: sum of 
two users’ rates = 
bottleneck capacity

• Fairness Line: two users’ 
rates equal

• Equi-Fairness Line: ratio 
of two users’ rates fixed
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Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes



Context: Where are the queues?  
The Routers!
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Switching
Fabric

Processor

Line card
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Problem: How to allocate egress router bandwidth to flows? 



Weighted Fair Queuing (WFQ)
• Weighted fair queuing
– Assign each queue a fraction of the link bandwidth
– Rotate across queues on a small time scale

• WFQ results in max-min fairness
– Maximizes the least rate that any flow gets

G G G

50% red, 25% blue, 25% green(G)
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Bit-by-Bit “Fluid” Fair Queuing (FQ)

Flow 1

Flow NClassification

Bit-by-bit round robin

Question: What is a “flow”?  
Flow 5-tuple:  protocol, IP source/dest, port src/dest

Question: How to choose weights?
Protocol class, bit markings, prefixes, etc. 

16



Bit-by-Bit Weighted FQ

• Flows allocated different rates by servicing different 
number of bits for each flow during each round. 

1
w1 = 0.1

w3 = 0.3
R1 C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…
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Packet vs. “Fluid” System

• Bit-by-bit FQ is not implementable:
…In real packet-based systems:
– One queue is served at any given time
– Packet transmission cannot be preempted

• Goal: A packet scheme close to fluid system
– Bound performance w.r.t. fluid system
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Packet-by-packet Fair Queuing
(Weighted Fair Queuing)

Copes better with variable size packets & weights

Key Idea: 
1. Determine the finish time of packets in bit-by-bit 

system, assuming no more arrivals 

2. Serve packets in order of finish times
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Implementing WFQ

Challenge: Determining finish time is hard

Idea: Don’t need finish time. Need finish order.

The finish order is a lot easier to calculate.
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Finish order
Let Li be the length of the packet at the head of queue i
In what order do these packets finish?
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1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

Increasing Li/wi

Does not change with future packet arrivals!



Bit-by-bit System Round

Round – One complete cycle through all the queues 
sending wi bits per queue 
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1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

w1 = 1

w3 = 3

w4 = 3

w2 = 3

Question: How many rounds does it take to 
serve a packet of length L from flow i?



Bit-by-bit System Round

Round – One complete cycle through all the queues 
sending wi bits per queue 
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1

w1 = 0.1

w3 = 0.3
R1

C

w4 = 0.3

w2 = 0.3

Order of service for the four queues:
… f1, f2, f2, f2, f3, f3, f3, f4, f4, f4, f1,…

L1

L2

L3

L4

w1 = 1

w3 = 3

w4 = 3

w2 = 3

Packet of length L takes L/wi rounds to serve



Round (aka. “Virtual Time”) 
Implementation of WFQ
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Question: What is finish round of kth packet – Fik?



Round (aka “Virtual Time”) 
Implementation of WFQ
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Assign a start/finish round to each packet at arrival 
à serve packets in order of finish rounds

Fi
k−1

R(a)

(Flow i backlogged)

k ……k-1

(Flow i empty)

k

Si
k =

Suppose kth packet of flow i arrives at time a

Start round 
of kth packet

Finish round 
of (k-1)st packet

Round number 
at time a



Putting it All Together

Fi
k = Si

k +
Li
k

iw

Si
k =max(Fi

k−1,R(a))

For kth packet of flow i arriving at time a:
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Simple approximation:
Set R(a) to start or finish round 
of packet currently in service

WFQ ::= Serve packets in order of finish round
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Today

• Key concepts in Congestion Control
– Retransmits and RTT estimator
– Slow Start and Self-clocking
– AIMD Congestion control

• Queue Management

• Middleboxes
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End-to-end violation: Firewalls

• Box in middle of network that blocks “malicious” traffic
– End-host software often vulnerable to remote-exploit malware
– Users are naive, don’t keep systems patched and up-to-date

• Firewalls clearly violate the e2e principle
– Endpoints are capable of deciding what traffic to ignore
– Firewall entangled with design of network and higher protocol 

layers and apps, and vice-versa
• Yet, we probably do need firewalls

Our network
X
FirewallInternet



Network Address Translation (NAT): 
Principled Objections

• Routers are not supposed to look at port #s
– Network layer should care only about IP header
– … and not be looking at the port numbers at all

• NAT violates the end-to-end argument
– Network nodes should not modify the packets

• IPv6 is a cleaner solution
– Better to migrate than to limp along with a hack

29

That’s what happens when network 
puts power in hands of end users! 



Middleboxes: Conclusions

• Middleboxes address important problems
– Getting by with fewer IP addresses
– Blocking unwanted traffic
– Making fair use of network resources
– Improving end-to-end performance

• Middleboxes cause problems of their own
– No longer globally unique IP addresses
– Cannot assume network simply delivers packets
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Next Up in 461

Next Class Meeting
Lectures 9 (Routing Algorithms) and 

10 (Routing Convergence)

Precepts this Thursday and Friday
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