
Class Meeting, Lectures 5 & 6:
Transport Layer and 
Congestion Control

Kyle Jamieson
COS 461: Computer Networks

www.cs.princeton.edu/courses/archive/fall21/cos461
[Parts adapted from material by M. Freedman (Princeton), B. Karp (UCL), D. Katabi, (MIT), S. Shenker (UCB)]

Best-effort local packet delivery

Best-effort global packet delivery

Reliable streams

Applications

Messages



Context: Transport Layer
• Best-effort network layer
– drops packets
– delays packets
– reorders packets
– corrupts packet contents

• Many applications want reliable transport
– all data reach receiver, in order they were sent
– no data corrupted
– “reliable byte stream”

• Need a transport protocol, e.g., Internet’s
Transmission Control Protocol (TCP)

2



TCP: Connection-Oriented,
Reliable Byte Stream Transport

• Sending app offers stream of bytes: d0, d1, d2, …

• Receiving application sees all bytes arrive in same sequence: 
d0, d1, d2…
– Not all applications need in-order behavior (e.g., ssh does, but do 

file transfer or teleconferencing, really?)
– result: reliable byte stream transport

• Each byte stream: connection, or flow

• Each connection uniquely identified by:
– <sender IP, sender port, receiver IP, receiver port>

3



User Datagram Protocol (UDP)
• Lightweight communication 

between processes
– Send and receive messages
– Avoid overhead of ordered, 

reliable delivery
• No connection setup delay, no 

in-kernel connection state

• Used by popular apps
– Query/response for DNS
– Some teleconferencing apps

SRC port DST port

checksum length

DATA

4

8 byte header



6

Fundamental Problem:
Ensuring At-Least-Once Delivery

• A strategy to ensure delivery:
– Sender attaches a unique number (nonce) to each data 

packet sent; keeps copy of sent packet
– Receiver returns acknowledgement (ACK) to sender for each 

data packet received, containing nonce
– Sender sets a timer on each transmission

• timer expires before ACK returns à retransmit that packet
• ACK returns à cancel timer, discard saved copy of that packet

– Sender limits maximum number of retransmissions

• How long should retransmit timer be?



7

Fundamental Problem: Estimating RTT

• Expected time of ACK’s return: round-trip time (RTT)
– end-to-end delay for data to reach receiver and ACK to 

reach sender
– propagation delay on links
– serialization delay at each hop
– queuing delay at routers

• Strawman: use fixed timer (e.g., 250 ms)
– what if the route changes?
– what if congestion occurs at one or more routers?



8

Estimating RTT: Exponentially Weighted Moving 
Average (EWMA)

• Measurements of RTT readily available
– note time t when packet sent
– corresponding ACK returns at time t’
– RTT measurement = m = t’-t

• Single sample too brittle
– queuing, routing dynamic

• Adapt over time, using EWMA:
– measurements: m0, m1, m2, …
– fractional weight for new measurement, α
– RTTi = ((1-α) x RTTi-1 + α x mi)

EWMA weights newest samples most
How to choose α? (TCP uses 1/8)

Is mean sufficient to capture RTT behavior 
over time? (more later)



9

Retransmission and Duplicate Delivery

• When sender’s retransmit timer expires, two 
indistinguishable cases (why?):
– data packet dropped en route to receiver, or
– ACK dropped en route to sender

• In both cases, sender retransmits

• In latter case, duplicate data packet reaches receiver!
– How to prevent receiver from passing duplicates to 

application?



10

Eliminating Duplicates:
Exactly Once Delivery

• Each packet sent with unique identifier (nonce)
• Strawman: receiver stores nonces previously seen (tombstones)

– if received packet seen before, drop, but resend ACK to sender
• How many tombstones must receiver store?

• Better plan: sequence numbers
– sender marks each packet with monotonically increasing 

sequence number (non-random nonce)
– sender includes greatest ACKed sequence number in its packets
– receiver remembers only greatest received sequence number, 

drops received packets with smaller ones



11

Window-Based Flow Control: Motivation

• Suppose sender sends one packet, awaits ACK, repeats…
• Result: one packet sent per RTT
• e.g., 70 ms RTT, 1500-byte packets: Max throughput: 171 Kbps



12

Fixed Window-Based Flow Control

• Pipeline transmissions to “keep pipe full”; overlap ACKs with data
• Sender sends window of packets sequentially, without awaiting ACKs
• Sender retains packets until ACKed, tracks which have been ACKed
• Sender sets retransmit timer for each window; when expires, resends all 

unACKed packets in window



13

Choosing Window Size:
Bandwidth-Delay Product

• How large a window is required at sender to 
keep the pipe full?

• Network bottleneck: point of slowest rate along 
path between sender and receiver

• To keep pipe full
– window size ≥ RTT × bottleneck rate

• Window too small: can’t fill pipe
• Window too large: unnecessary network 

load/queuing/loss



14

TCP Packet Header

• TCP packet: IP header + TCP header + data
• TCP header: 20 bytes long
• Checksum covers header + “pseudo header”
– IP header source and destination addresses, protocol
– Length of TCP segment (TCP header + data)



15

TCP Header Details
• Connections inherently bidirectional; all TCP headers 

carry both data and ACK sequence numbers
• 32-bit sequence numbers are in units of bytes
• Source and destination ports
– multiplexing of TCP by applications
– UNIX: local ports below 1024 reserved (only root may use 

them)
• Window: advertisement of number of bytes advertiser 

willing to accept



16

TCP Connection Establishment:
Motivation

• Goals:
– Start TCP connection between two hosts
– Avoid mixing data from old connection in new 

connection
– Avoid confusing previous connection attempts with 

current one
– Prevent (most) third parties from impersonating 

(spoofing) one endpoint
• SYN packets (SYN flag in TCP header set) used to 

establish connections
• Use retransmission timer to recover from lost 

SYNs
• What protocol meets above goals?



17

TCP Connection Establishment:
Non-Solution (I)

• Use two-way handshake
• A sends SYN to B

– A retransmits SYN if not 
received

– B accepts by returning SYN to A
• A and B can ignore duplicate 

SYNs after connection 
established

• What about delayed data 
packets from old connection?

SYN

SYN

data, seqno = 1

time

data, seqno = 512

A B

close
dSYN

SYN

data, seqno = 1data, seqno = 512

data, seqno = 1024

data, seqno = 1024

Connections shouldn’t start with constant 
sequence number; risks mixing data 
between old and new connections



18

TCP Connection Establishment:
Non-Solution (II)

• Two-way handshake, as 
before

• But enclose random initial 
sequence numbers on 
SYNs

• What about delayed SYNs 
from old connection?
– A wrongly believes 

connection successfully 
established

– B will drop all of A’s data!

time
A B

close
dSYN, seqno = k

SYN, seqno = j

data, seqno = k+1

SYN, seqno = i

data 
ignored

!

Connection attempts should explicitly 
acknowledge which SYN they are 

accepting!



19

TCP Connection Establishment:
3-Way Handshake

• Set SYN on connection 
request

• Each side chooses 
random initial 
sequence number (ISN)

• Each side explicitly 
ACKs the sequence 
number of the SYN it’s 
responding to

SYN, seqno = i

SYN, seqno = j, 

ACK = i+1

seqno = i+1, 
ACK = j+1

time

A B



20

Robustness of 3-Way Handshake:
Delayed SYN

• Suppose A’s SYN i 
delayed, arrives at B 
after connection closed

• B responds with 
SYN/ACK for i+1

• A doesn’t recognize i+1; 
responds with reset, RST 
flag set in TCP header

• A rejects connection

SYN, seqno = i

SYN, seqno = j, 

ACK = i+1

RST, ACK = j+1

time

A B

close
d



21

Robustness of 3-Way Handshake:
Delayed SYN/ACK

• A attempts connection 
to B

• Suppose B’s SYN k/ACK p 
delayed, arrives at A 
during new connection 
attempt

• A rejects SYN k; sends 
RST to B

• Connection from A to B 
succeeds unimpeded

SYN, seqno = i

SYN, se
qno = j, 

ACK = i+
1

seqno = i+1, 
ACK = j+1

time

A B
close

d

SYN, se
qno = k, 

ACK = p

RST, ACK = k



22

Robustness of 3-Way Handshake:
Source Spoofing

• Suppose host B trusts host 
A, based on A’s IP
– e.g., B allows any account 

creation request from A

• Adversary M may not 
control A, but may seek to 
impersonate A
– M may not need to receive data 

from B; only send data (e.g., 
“create an account l33thax0r”)

• Can M establish a 
connection to B as A?

A B

M
IP

 =
 A, S

YN, 

seqno = i

SYN, seqno = j, 
ACK = i+1

IP = A, se
qno = 

i+1, A
CK = ??Unless he is on path between A and B, adversary 

cannot spoof A to B or vice-versa!
Why: random ISNs on SYNs



Next Up in 461

Next Class Meeting
Lectures 7 (Queue Management) and 

8 (Middleboxes, Tunneling)

Precepts this Thursday and Friday

35


