#### **COS 461 Computer Networks**

#### **Class Meeting, Lectures 3 & 4**

Kyle Jamieson Fall 2021

#### Need to miss 461? Just reach out

#### Short-Term Remote Teaching and Other Contingency Measures

## Under what circumstances might students or faculty need to miss class due to COVID?

Three COVID-related situations would require a student or faculty member to stay in their dorm or at home (as applicable) during the semester:

- 1. Anyone experiencing **COVID-like symptoms** should stay home/in their dorm room until they are tested and receive a negative test result.
- Anyone who receives a positive COVID test result will be required to self-isolate.
   Isolation will be a minimum of 10 days; isolation longer than 10 days is rare, but possible. Isolation means restricting activities outside of one's home or isolation dorm, except for obtaining medical care when necessary.

#### **IP Protocol Stack: Key Abstractions**

| Application | Applications                             |          |
|-------------|------------------------------------------|----------|
| Transport   | Reliable streams                         | Messages |
| Network     | Best-effort global packet delivery       |          |
| Link        | Best-effort <i>local</i> packet delivery |          |

#### **Best-Effort Global Packet Delivery**

#### Circuit Switching (e.g., Phone Network)

- Source establishes connection
  - Reserve resources along hops in the path
- Source sends data

- Transmit data over the established connection

- Source tears down connection
  - Free the resources for future connections



#### **Circuit Switching: Static Allocation**

- Time-division
  - Each circuit allocated certain time slots
- Frequency-division
  - Each circuit allocated certain frequencies





#### Packet Switching

- Message divided into packets
  - Header identifies the destination address
- Packets travel separately through the network
  - Forwarding based on the destination address
  - Packets may be buffered temporarily
- Destination reconstructs the message



#### Is Best Effort Good Enough?

- Packet loss and delay
   Sender can resend
- Packet corruption
  - Receiver can detect, and sender can resend
- Out-of-order delivery
  - Receiver can put the data back in order

- Packets follow different paths
  - Doesn't matter
- Network failure
  - Drop the packet
- Network congestion

Drop the packet

### Packet (Y) vs. Circuit Switching (A)?

- Predictable performance
- Network never blocks senders
- Reliable, in-order delivery
- Low delay to send data
- Simple forwarding
- No overhead for packet headers
- High utilization under most workloads
- No per-connection network state

Circuit

Packet

Circuit

Packet

Circuit

Circuit

Packet

Packet

#### **Network Addresses**

#### **Grouping Related Hosts**

- The Internet is an "inter-network"
  - Used to connect networks together, not hosts
  - Need to address a network (i.e., group of hosts)



- LAN = Local Area Network
- WAN = Wide Area Network

#### **Scalability Challenge**

- Suppose hosts had arbitrary addresses
  - Then every router would need a lot of information
  - ...to know how to direct packets toward every host



forwarding table

#### **Hierarchical Addressing: IP Prefixes**

- Network and host portions (left and right)
- 12.34.158.0/24 is a 24-bit prefix with 2<sup>8</sup> addresses



#### Scalability Improved

- Number related hosts from a common subnet
  - 1.2.3.0/24 on the left LAN
  - 5.6.7.0/24 on the right LAN



#### Easy to Add New Hosts

- No need to update the routers
  - E.g., adding a new host 5.6.7.213 on the right
  - Doesn't require adding a new forwarding-table entry



#### Classless Inter-Domain Routing (CIDR)

• Use two 32-bit numbers to represent network:

Network number = IP address + Mask

IP Address : 12.4.0.0 IP Mask: 255.254.0.0



#### **Hierarchical Address Allocation**

- Hierarchy is key to scalability
  - Address allocated in contiguous chunks (prefixes)
  - Today, the Internet has about 600-800,000 prefixes



#### **Packet Forwarding**

#### Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
  - Maps destination address to outgoing interface
- Upon receiving a packet
  - Inspect the destination address in the header
  - Index into the table
  - Determine the outgoing interface
  - Forward the packet out that interface
- Then, the next router in the path repeats

#### Separate Forwarding Entry Per Prefix

- Prefix-based forwarding
  - Map the destination address to matching prefix
  - Forward to the outgoing interface



#### **CIDR Makes Packet Forwarding Harder**

- Forwarding table may have many matches
  - E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
  - The IP address 201.10.6.17 would match both!



#### Longest Prefix Match Forwarding

- Destination-based forwarding
  - Packet has a destination address
  - Router identifies longest-matching prefix
  - Cute algorithmic problem: very fast lookups



"Layer 2" Hubs and Switches

#### Bridges/Switches: Traffic Isolation

- Switch filters packets
  - Frame only forwarded to the necessary segments
  - Segments can support separate transmissions



#### Self Learning: Building the Table

- When a frame arrives
  - Inspect the *source* MAC address
  - Associate the address with the *incoming* interface
  - Store the mapping in the switch table
  - Use a timer to eventually forget the mapping



#### Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
  - Forward the frame out all of the interfaces
  - ... except for the one where the frame arrived
  - Hopefully, this case won't happen very often!



#### Link Layer: Switches

- Typically connects individual computers

   A switch is essentially the same as a bridge
   ... though typically used to connect hosts
- Supports concurrent communication
   Host A can talk to C, while B talks to D



#### L3 Routers: Looking closer...

#### **Basic Router Architecture**

- Each switch/router has a forwarding table
   Maps destination address to outgoing interface
  - Maps destination address to outgoing interface

- Basic operation T/s
  - 1. Receive packet
  - 2. Look at header to determine destination address
  - 3. Look in forwarding table to determine output interface
  - 4. Modify packet header (e.g., decr TTL, update chksum)
  - 5. Send packet to output interface

#### **Basic Router Architecture**



- Basic operation
  - 1. Receive packet
  - 2. Look at header to determine destination address
  - 3. Look in forwarding table to determine output interface

Line Card (I/O)

- 4. Modify packet header (e.g., decr TTL, update chksum)
- 5. Send packet to output interface

#### Router



#### LPM: Motivation

- Each packet has destination IP address
- Router looks up table entry that matches address
- Benefits of CIDR allocation and LPM

Efficiency: Prefixes can be allocated at much finer granularity

Hierarchical aggregation: Upstream ISP can aggregate
 2 contiguous prefixes from downstream ISPs to
 shorter prefix

#### **Decision: Crossbar switch**



# Decision: Crossbar switch Shared bus Only one input can speak to one output at a time

- Crossbar switch / switched backplane
  - Input / output pairs that don't compete can send in same timeslot

#### **Crossbar switching**

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs



#### **Crossbar switching**

- Every input port has connection to every output port
- In each timeslot, each input connected to zero or more outputs



#### **Problem: Head-of-line blocking**

- Packet at front of queue blocks packets behind it from being processed
  - e.g.: 1<sup>st</sup> packet at Input 1 wants to go to Output 5;
     next packet at Input 1 that wants Output 4 is still blocked



#### **Solution:** *Virtual output queues*

- One queue at input, per output port (for all inputs)
- So avoids head-of-line blocking during crossbar scheduling



#### Processo Data, Control, & Management Planes Switching Fabric Data Control Management **Event** Time-Human Packet (ns) scale (10 ms to sec) (min to hours) Forwarding, buffering, Routing, Analysis, **Tasks** configuration filtering, signaling scheduling Line-card Router Humans or Location software hardware scripts

#### Coming Up in 461

#### **Next Class Meeting**

Lectures 5 (Transport Layer) and 6 (Congestion Control)

#### Precepts this Thursday and Friday