
COS 326 Functional Programming:
An elegant weapon for a more civilized age

Princeton University

slides copyright 2021 David Walker and Aarti Gupta
permission granted to reuse these slides for non-commercial educational purposes

Aarti Gupta David Walker

1

Your professors
2

Aarti Gupta David Walker

Your professors
3

David WalkerAarti Gupta

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

4

Indeed!

Alonzo Church
1934 -- developed lambda calculus

Alan Turing (PhD Princeton 1938)
1936 -- developed Turing machines

Programming Languages Computers

http://press.princeton.edu/chapters/s9780.pdf
Optional reading: The Birth of Computer Science at Princeton in the 1930s
by Andrew W. Appel, 2012.

5

http://assets.press.princeton.edu/chapters/s9780.pdf

A few designers of functional programming languages
6

Alonzo Church:
λ-calculus, 1934

John McCarthy
(PhD Princeton 1951)

LISP, 1958

Guy Steele & Gerry Sussman:
Scheme, 1975

LISP, 1960

7

(define
(my-max3 x y z)
(if (and (> x y) (> x z))

x
(if (> y z)

y
z))) or mother's

©
 2

00
7

xk
cd

Vastly Abbreviated FP Genealogy
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(1960-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

8

Vastly Abbreviated FP Geneology
LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

9

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for concurrency,
Haskell for managing PHP,
OCaml for bug-finding

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

www.artima.com/scalazine/articles/twitter_on_scala.html
www.infoq.com/presentations/haskell-barclays
www.janestreet.com/technology/index.html#work-functionally
msdn.microsoft.com/en-us/fsharp/cc742182
research.google.com/archive/mapreduce-osdi04.pdf
www.lightbend.com/case-studies/how-apache-spark-scala-and-functional-programming-made-hard-problems-easy-at-barclays
www.haskell.org/haskellwiki/Haskell_in_industry

Haskell
for specifying
equity derivatives

mathematicians
Coq (re)proof of
4-color theorem

10

COURSE LOGISTICS

11

Course Staff
12

Professors

David Walker

Preceptors

Kathy Chen Anja Kalaba Lisa Liu

Aarti Gupta

Undergraduate Course Assistants: TBD (watch the course website)

Resources

• coursehome: http://www.cs.princeton.edu/~cos326
• Communication

– Ed: https://us.edstem.org/courses/7418/discussion/
• Lecture schedule and readings:

– $(coursehome)/lectures.php for schedule and slides
– Lecture material is available in prerecorded videos
– Join the professors during lecture meeting time

• Mon and Wed: 11am – 12:20pm ET, McCosh Hall 46
• Part 1: Q&A, please watch the video material in advance
• Part 2: Ask-me-anything sessions (new! see next slide)

• Assignments:
– $(coursehome)/assignments.php

• Precepts: (one hour per week, on Th/Fri)
– Precept attendance is mandatory.

• Install OCaml: $(coursehome)/resources.php

13

https://us.edstem.org/courses/7418/discussion/

Lectures and Ask-me-anything (AMA) Sessions

• Each lecture class has two parts
– Part 1: Ask the professor any questions on the lecture material

• Questions on assignments are better left to office hours and precepts
– Part 2: Ask-me-anything (AMA) session

• When the first part questions are done, the AMA starts
• The main idea is to get to know each other, would be nice to

reconnect after the pandemic

• AMA
– We plan to assign ~10 students to each AMA (list on website)
– Assigned students can ask any question

• E.g., How do I come up with an IW topic? What’s the coolest idea in
computer science you’ve come across? What non-computer science
class would you take?

• More ideas are welcome! (but we’d like to steer clear of politics)
– We too might ask questions, to get to know you and get feedback

14

JRW 326 Course

• Also new this year, we have a Junior Research Workshop
(JRW) course associated with COS 326

• The JRW 326 course is taken only by COS AB students
– It serves as their IW requirement in Junior Fall semester
– Some material in JRW 326 will be based on the material we

cover in the lectures and precepts here

15

A Typical Week

Monday
– Lecture meeting at 11-12:20, with professor

Wednesday
– Lecture meeting at 11-12:20, with professor

Thursday
– Assignment due (in many weeks)

Thursday/Friday
– Mandatory precept reinforces lecture content in small groups
– You may have questions for your preceptor about the next

assignment

16

Collaboration Policy

The COS 326 collaboration policy can be found here:

Read it in full prior to beginning the first assignment.

Please ask questions whenever anything is unclear, at any time
during the course.

http://www.cs.princeton.edu/~cos326/info.php#collab

17

Sample README.txt (abridged)
Netids (include all members of group, if parternering):

[list here]

In doing this homework I used the following sources:

1. Sources I don't need to mention [see notes 1 and 4]
2. Authorized sources [see notes 2 and 4]

[list here]
3. Unauthorized sources [see notes 3 and 4]

[list here]

This paper represents my own work in accordance with
University regulations.

Signed, [your name(s):]

--
NOTE 1: Sources you don't need to mention
this semester's lectures and precepts, the course web
site, the assignment handout (download), Real World
OCaml, and the OCaml manual.

NOTE 2: Authorized sources include:
professors and preceptors, advice from other students

(but not looking at their solutions); other books, and
(within reason) web sites such as stackoverflow.com.

18

NOTE 3: "Why would I list an unauthorized source?"
Using an unauthorized source without citing it is an

Academic Violation under Princeton University's
disciplinary code, and can result in suspension from the
University.

Using an unauthorized source and citing it clearly is
"merely" a violation of this homework's instructions, and
can result in (at most) getting a zero on this homework.

Unauthorized sources include, at least: other people's
solutions to these (or similar) homework problems.

NOTE 4. If you paste in code from from these sites, you
should clearly cite it at the point of use, in accordance
with Section 2.4.6 of RRR for "direct quotation or
extensive paraphrase".

Please limit the amount of this that you do in accordance
with the principle that the purpose of these homeworks
is so that you can learn how to do things yourself.

Course Textbook

http://realworldocaml.org/

19

Exams

Two take-home exams
– Exam 1 during midterm week, Oct 12-13
– Exam 2 near the end of classes, Nov 30-Dec 1

No Final Exam!

20

Assignment 0

Download and install OCaml and get emacs or your favorite
editor set up to process OCaml code
(syntax highlighting; type checking)

See the Resources Page for install instructions on your platform:

http://www.cs.princeton.edu/~cos326/resources.php

21

http://www.cs.princeton.edu/courses/archive/fall13/cos326/resources.php

Thinking Functionally

imperative code:

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

22

commands modify or change an
existing data structure (like pair)

pure, functional code:

let (x,y) = pair in
(y,x)

you analyze existing data (like pair)
and you produce new data (y,x)

Thinking Functionally

imperative code:

• outputs are irrelevant!
• output is not function of input
• data properties change
• unrepeatable
• parallelism hidden
• harder to test
• harder to compose

pure, functional code:

• outputs are everything!
• output is function of input
• data properties are stable
• repeatable
• parallelism apparent
• easier to test
• easier to compose

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

let (x,y) = pair in
(y,x)

23

This simple switch in perspective can change the way you
think

about programming and problem solving.

24

Have fun!

Let's make this an amazing semester!

25

Aarti Gupta David Walker

Kathy Chen Anja Kalaba Lisa Liu

