
Precept 4: IPC & Process Mngmt.

COS 318: Fall 2021



Project 4 Schedule

● Precept: Monday 10/25, Tues 10/26, 7:30 PM

● Assn 3 Due: Wedn 10/27 11:55 PM

● Design Review: Wedn 10/27 5 - 7pm, 
8-10PM, Thurs 10/28 5-7 PM*

● Assn 4 Due: Sunday 11/7, 11:55pm



Preemption/Scheduling Finished!
- Now: Kernel is able to handle many different processes all running at once, 

and can automatically preempt them to give time for each process.
- Also have synchronization primitives so processes can work together, if 

known which will be alive together.

- TODO: All these processes need to be set up at compile time when the kernel 
is being built. How can we make it so that new processes can be added 
dynamically at run-time?

- And, if we cannot have statically-known memory, how do processes 
communicate?



Project 4 Overview

● Goal: Add process management and 
inter-process communication to the kernel

● Read the project spec for details

● Starter code can be found on the lab 
machines (/u/318/code/project4)

● Start early



Project 4 Overview

1. Implement a spawn system call

2. Implement inter-process communication using 
message boxes

3. Implement a handler for the keyboard interrupt

4. Implement a kill system call

5. Implement a wait system call



Project 4 Implementation Checklist

1. do_spawn: creates a new process

2. do_mbox_*: mbox functions to enable IPC

- open, close, send, recv, is_full

3. Handle keyboard input: putchar, do_getchar

4. do_kill: kills a process

5. do_wait: waits on a process



System Calls



Spawn(char* filename)

● Kernel has a fixed max amount of PCBs

● What information do you need to initialize a process?
○ PID
○ New stacks (user/stack)
○ Entry point (ramdisk_find)
○ total_ready_priority (lottery scheduling)

● Scheduler uses lottery scheduling (i.e. sampling)

● Need to keep the sum of the priorities updated



Kill(some pid)

● A process should be killed (immediately?) after this is invoked
● Any queue it’s in (ready, blocked, sleeping, etc.) doesn’t matter – kill 

it! Two methods of implementation, lazy or eager
● Do not reclaim locks (this is extra credit)
● Reclaim memory:

○ PCB
○ Stacks
○ Look at robinhood test case to determine what else needs to be 

reclaimed
● Update total_ready_priority



Wait(other pid)

● Waits for a process to terminate:
○ Blocks until the process is killed or exits normally

● What do you need to add to the PCB to 
implement this behavior?

● Return -1 on failure, 0 on success



Message Passing + Keyboard



Message Box - Overview

● Used for inter-process communication

○ Processes can both put and consume data from the 
message box

● Implementing a bounded buffer:

○ send blocks if the message box is full

○ recv blocks if there are no messages



Message Box - Implementation

● Recommend implement as a circular buffer

○ Array, with head and tail pointers

● Receive messages in FIFO order

● Messages can have variable length

○ But, there is a fixed max length. See constants at 
bottom of common.h



Message Box - Suggestions

● Use locks and CVs as shown in class

○ Probably need two CVs: fullBuffer and 
emptyBuffer

● Multiple producers + consumers: protect 
against race conditions

● Review Lecture 10 and MOS 2.3.7-8

https://www.cs.princeton.edu/courses/archive/fall18/cos318/lectures/10.MessagePassing.pdf


Message Boxes Outside of OS

● Erlang: “Actor Model”, many independent processes that 
communicate with messages

● Golang: Green Threads (i.e. userspace threads) with 
channels

● Common in distributed systems, networking
● https://go.dev/blog/codelab-share



Message Passing vs. Shared Memory
● In theory, if you had implemented a heap allocator, could 

use shared memory with sync primitives instead of 
message passing

● What are the potential pros/cons of using shared 
memory vs message passing?



Keyboard - How does it work?

● IRQ1 interrupt generated on key press or release

● Interrupt handler gets key scan code from hardware

● Specific key handler called, based on key type:

○ Modifier Key: change internal state

○ Other Keys: convert scan code to ASCII char + post to 
keyboard buffer 

https://wiki.osdev.org/Interrupts


Keyboard - Software Design

● kernel.c:init_idt sets keyboard handler to 
entry.S:irq1_entry (same as irq0)

● irq1_entry saves context + calls 
keyboard.c:keyboard_interrupt

● keyboard_interrupt gets scan code from 
hardware + calls specific key handler



Keyboard - Software Design
● keyboard.c contains logic for handling keys

● Modifier keys (shift, ctrl, etc) w/ own handlers

● normal_handler catches character keys:

○ Converts scan code to ASCII character

○ Calls putchar to add it to keyboard buffer

● Processes read from buffer with get_char



Keyboard - What you need to do
● Keyboard stores typed characters in an mbox

● Implement putchar and do_getchar for handling 
typed keys and syscall for getting keys

● Producer should not block

○ If keyboard message box is full, discard the character

○ Use do_mbox_is_full to check beforehand

● What if IRQ1 occurs while a process is calling get_char?



● While the keyboard (and mouse) is special-cased, other 
devices do not have their own interrupt handlers.

● Other devices may adhere to different protocols, such as 
communicating with USB or hard-drives.

● Because of many different standards, device drivers often are 
the buggiest part of an OS, but keyboard can still have subtle 
bugs.

Note: Keyboard vs Other Devices

https://jvns.ca/blog/2013/12/04/day-37-how-a-keyboard-works/
https://jvns.ca/blog/2013/12/04/day-37-how-a-keyboard-works/


Tips + Other Notes
● Synchronization is tricky: think carefully about when / 

how to use locks, CVs, and critical sections

● Look at util.h + other .h files for helpful functions

● May need to change other pieces of code - this is fine

○ Make sure you submit them!

● Be careful of pass by value in C

● Only two test cases provided: write your own unit tests



Design Review

● Process Management:
○ How will your spawn, wait, and kill work?
○ How will you satisfy the requirement that if a process is killed 

while blocked on a lock, semaphore, condition variable or barrier, 
the other processes which interact with that synchronization 
primitive will be unaffected?

● Mailboxes:
○ What fields will the structs need?
○ Which synchronization primitives will you use?



Questions?


