
Precept 2: Non-preemptive Scheduler

COS 318: Fall 2021

Done with Bootloader!

● Now we want to add functionality to the
kernel to run (many) programs!

● Have some hard-coded kernel-space
programs to run

● We want each program to be able to yield
periodically

Project 2 Schedule

● Precept: Monday 9/27, Tuesday 9/28, 7:30pm

● Design Review: Tuesday 9/28 8:30-10:30pm,
Wednesday 9/29 3-7pm

https://www.cs.princeton.edu/courses/archive/fall21/cos318/projects/signup
/2.cgi

● Due: Sunday 10/10, 11:55pm

https://www.cs.princeton.edu/courses/archive/fall21/cos318/projects/signup/2.cgi
https://www.cs.princeton.edu/courses/archive/fall21/cos318/projects/signup/2.cgi

Project 2 Overview

● Goal: Build a non-preemptive kernel that can
switch between different tasks (task = process
or kernel thread)

● Read the project spec for more details

● Start early

What is a Non-Preemptive Kernel?

Current running task loses CPU or running state

in the following scenarios:

1. Yield

2. Block: I/O operation, Lock (thread)

3. Exit

What is a Non-Preemptive Kernel?

What is a Non-Preemptive Kernel?

What You Need to Deal With

1. Process Control Blocks (PCBs)

2. User and Kernel Stack

3. Basic System Call Mechanism

4. Context Switching

5. Mutual Exclusion

Assumptions
● Protected Mode: No more segment registers: 32 bit

memory, no more BIOS
● Non-Preemptive Tasks: Run code until yield, block,

or exit
● Fixed Number of Tasks: Allocate per-task state

(PCB) statically in your program at compile time
● Fixed Task Stack Size

1. Process Control Block (PCB)
● Defined in kernel.h and initialized in kernel.c:_start
● What is its purpose?
● What should be in the PCB?

- Process ID (PID)
- Stack Info
- Registers
- CPU Time
- Etc.

2. Allocating Stacks

● Allocate separate user-space stacks for each task in kernel.c:_start()
● In theory, processes have two stacks:

1. User Stack: For the process to use
2. Kernel Stack: For the kernel to use when executing system calls

on behalf of the process
Option: In this assignment, you can opt to use only one stack

● Kernel threads need only one stack
● 4kB per stack is enough

3. System Calls - Typically...

● let user processes ask for kernel services

● Standard Procedure:

○ Push system call ID + arguments onto stack

○ Interrupt / trap: elevate privileges + jumps into kernel

● NOT the case for this assignment...

https://wiki.osdev.org/System_Calls

3. System Calls - In this project

● User processes use library syslib.h

● This library allows for:

○ Loading kernel entry point address from known
location in memory (ENTRY_POINT)

○ Push system call ID onto stack + call kernel_entry
function

3. System Calls - kernel_entry

● kernel_entry address stored
at ENTRY_POINT (0xf00)

● Saves registers + switches to
kernel stack

● Does the reverse when exiting
the kernel

4. Context Switch - Overview

● Goal: safely switch currently running task

● When does this happen?

○ Preemptive OS: typically when OS dictates: i.e. timer
interrupt

○ Non-preemptive OS: when task yields or exits

4. Context Switch - Responsibilities

1. Save task state into PCB

2. Push current PCB into ready or block queue

3. Choose new task from ready queue + pop its
PCB

4. Restore new task state + run it

4. Context Switch - Saving State

● Tasks should not care what happens while its
not running - save current state in its PCB:

○ General purpose registers (including %esp)

○ Flags

● What about the instruction pointer?

4. Context Switch - Scheduling

● Kernel must maintain:

○ Ready Queue: tasks ready to be run

○ Blocked Queue: tasks blocked on some resource

● Which task runs next?

○ Regular: round-robin EC: lowest run-time

5. Mutual Exclusion (via locks)

● Spinlock implementation is provided, you
must implement a blocking lock

○ See spec for precise requirements

● No preemption => no race conditions *

● Exactly one correct trace

Timing context switches

● util.c:get_timer returns # cycles since boot

● Implement parts of th3 and process3

○ process3 included twice in task list - be able to
distinguish between the two executions

Tips + Things to think about...

● What should you do when a kernel thread is run for
the first time?

● What state should be saved to PCB? In what order?

● Code and test incrementally

Design Review
(Tue & Wed, Sep 28th & 29th) Answer the questions:
● Process Control Block: What will be in your PCB and what will it be

initialized to?
● Context Switching: How will you save and restore a task’s context?

Should anything special be done for the first task?
● Processes: What, if any, are the differences between threads and

processes and how they are handled?
● Mutual Exclusion: What’s your plan for implementing mutual

exclusion?
● Scheduling: Look at the project web page for questions about an

execution example.

Uses of Non-Preemptive Schedulers

● Generators in python, coroutines in C#, async operator in Javascript,
must maintain state between function calls

● Inside the runtime of programming languages, i.e. Go’s goroutines
will yield when locking if lock is held

● Real-time Operating Systems, such as pacemakers, or other medical
devices

Questions?

