
COS 318: Operating Systems

Synchronization: Semaphores,
Monitors and Condition Variables

2

Today’s Topics

u Mutex Isn’t Enough
u Semaphores
u Condition Variables
u Monitors
u Barriers

Revisit Mutex
u Mutex can solve the critical section problem

Acquire(lock);
Critical section

Release(lock);

u Use Mutex primitives to access shared data structures
E.g. shared “count” variable

Acquire(lock);
count++;
Release(lock);

u Are mutex primitives adequate to solve all
synchronization problems?

3

Producer-Consumer (Bounded Buffer) Problem

4

count = 4

N = 12

Producer:
while (1) {

produce an item

Insert item in buffer

count++;
}

Consumer:
while (1) {

remove an item from buffer

count--;

consume an item
}

u Can we solve this problem with Mutex primitives?

Producer-Consumer (Bounded Buffer) Problem

u Does this work?

5

count = 4

N = 12

Producer:
while (1) {

produce an item

Acquire(lock);
Insert item in buffer
count++;
Release(lock)

}

Consumer:
while (1) {
Acquire(lock);
remove an item from buffer
count--;
Release(lock);

consume an item
}

6

Limitations of Locks

u Provide mutual exclusion: only one process/thread can be in the
critical section at a time

u Do not provide ordering or sequencing (aka event synchronization)
l Who gets to be in critical section first?
l How does thread A wait for thread B (or C, D, E) to do X before A does Y?

• How does producer know when to stop inserting, or consumer when to remove?

Use Mutex, Block and Unblock

u Use block/unblock for ordering
u Does this work?

7

count = 4

N = 12

Producer:
while (1) {

produce an item
if (count == N)

Block();
Insert item in buffer
Acquire(lock);
count++;
Release(lock);
if (count == 1)

Unblock(Consumer);
}

Consumer:
while (1) {

if (!count)
Block();

remove an item from buffer
Acquire(lock);
count--;
Release(lock);
if (count == N-1)

Unblock(Producer);
consume an item

}

Use Mutex, Block and Unblock

u Ultimately, both block and never wake up
u Lost the unblock; any way to “remember” them?

9

count = 0

Producer:
while (1) {

produce an item
if (count == N)

Block();
Insert item in buffer
Acquire(lock);
count++;
Release(lock);
if (count == 1)

Unblock(Consumer);
}

Consumer:
while (1) {

if (!count)
{context switch}

Block();
remove an item from buffer
Acquire(lock);
count--;
Release(lock);
if (count == N-1)

Unblock(Producer);
consume an item

}
N = 12

count = 1count = 12

Consumer:
while (1) {

if (!count)
{context switch}

Block();
remove an item from buffer
Acquire(lock);
count--;
Release(lock);
if (count == N-1)

Unblock(Producer);
consume an item

}

10

Limitations of Locks and Block/Unblock

u Need some way of counting or remembering number of
events

u Need additional synchronization mechanisms
l Semaphores
l Condition Variables
l Monitors
l (Higher level constructs composed from these)

11

Semaphores (Dijkstra, 1965)

u A semaphore is a synchronization variable that contains an
integer value
l Cannot access the integer value directly (only via semaphore operations)
l Initialized to some integer value
l Supports two atomic operations other than initialization

• P(), (or down() or wait()); P for Proberen
• V() (or up() or signal()); V for Verhogen

u If positive value, think of value as keeping track of how many
‘resources’ or “un-activated unblocks” are available

u If negative, tracks how many threads are waiting for a resource
or unblock

u Provides ordering and counting (of ‘surplus’ events/resources)

12

Semaphores (Dijkstra, 1965)

u P (or Down or Wait or “Proberen” (to try)) definition
l Atomic operation
l Block version: Decrement value, and if result less than zero then block
l Spin version: Wait for semaphore to become positive and then decrement

P(s){ P(s){
if (--s < 0) while (s <= 0)

block(s); ;
s--;

} }

u V (or Up or Signal or “Verhogen” (increment)) definition
l Atomic operation
l Block version: increment, and if non-positive (which means at least one

thread is blocked waiting on the sempahore) then unblock a thread
l Spin version: Increment semaphore

V(s){ V(s){
if (++s <=0) s++;

unblock(s); }

}

Bounded Buffer with Semaphores

u Initialization: emptyCount = N; fullCount = 0
u Are P(mutex)and V(mutex) necessary?

Producer:
while (1) {

produce an item
P(emptyCount);

P(mutex);
put item in buffer
V(mutex);

V(fullCount);
}

Consumer:
while (1) {

P(fullCount);

P(mutex);
take an item from buffer
V(mutex);

V(emptyCount);
consume item

}

Uses of Semaphores in this Example

u For Event sequencing: emptyCount, fullCount
l Don’t consume if buffer empty, wait for something to be added
l Don’t add if buffer full, wait for something to be removed

u For Mutual exclusion; mutex
l Avoid race conditions on shared variables

14

15

Interrupted Thread

…

Interrupt
…

Example: Interrupt Handler

Interrupt handler
...

V(s);
...

Device thread
while (1) {

P(s);
Acquire(m);
...
deal with interrupt
...
Release(m);

}

Init(s,0);

Bounded Buffer with Semaphores (again)

producer() {
while (1) {

produce an item
P(emptyCount);

P(mutex);
put the item in buffer
V(mutex);

V(fullCount);
}

}

consumer() {
while (1) {

P(fullCount);

P(mutex);
take an item from buffer
V(mutex);

V(emptyCount);
consume the item

}
}

Does Order Matter?

producer() {
while (1) {

produce an item

P(mutex);
P(emptyCount);
put the item in buffer
V(mutex);

V(fullCount);
}

}

consumer() {
while (1) {

P(fullCount);

P(mutex);
take an item from buffer
V(mutex);

V(emptyCount);
consume the item

}
}

u Q: What problem can happen if the order of
P(mutex) and P(emptycount) are reversed as here?

Different Example: Waiting in Critical Section

u A lock provides mutual exclusion to the shared data
u Rules for using a lock:

l Always acquire before accessing shared data structure
l Always release after finishing with shared data
l Lock is initially free.

u Simple example: a synchronized queue

bool tryInsert()
{

lock.Acquire(); // lock before use
… put item on queue; // ok to access
lock.Release(); // unlock after done
return success;

}

bool tryRemove()
{ …

lock.Acquire();
if something on queue // can we wait?

remove it;
lock->Release();
return success;

}

Condition Variables

u Make tryRemove wait until something is on the queue?
l Can’t just sleep while holding the lock
l Key idea: make it possible to go to sleep inside critical section,

by atomically releasing lock at same time we go to sleep.

u Condition variable: enables a queue of threads
waiting for something inside a critical section.
l Wait() --- Release lock, go to sleep, re-acquire when woken

• release lock and going to sleep is atomic

l Signal() --- Wake up a waiter, if any
l Broadcast() --- Wake up all waiters

Synchronized Queue

u Rule: must hold lock when doing condition variable
operations

AddToQueue()
{

lock.acquire();

put item on queue;
condition.signal();

lock.release();
}

RemoveFromQueue()
{

lock.acquire();

while nothing on queue
condition.wait(&lock);

// release lock; got to
// sleep; reacquire lock
// when woken

remove item from queue;
lock.release();
return item;

}

Condition variable design pattern

methodThatWaits() {
lock.acquire();

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// Read/write shared state

lock.release();
}

methodThatSignals() {
lock.acquire();

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// Read/write shared state

lock.release();
}

Condition variables

u ALWAYS hold lock when calling wait, signal, broadcast
l Condition variable is synchronization FOR shared state
l Remember: ALWAYS hold lock when accessing shared state

u Unlike semaphore, condition variable is memory-less
l If signal when no one is waiting, no op
l If signal after a wait is posted, a waiter wakes up

u Wait atomically releases lock

Structured synchronization

u Identify objects or data structures that can be accessed
by multiple threads concurrently

u Add locks to object/module
l Obtain lock on start to every method/procedure
l Release lock when finished

u If need to wait for something inside critical section
l while(needToWait()) { condition.Wait(lock); }

u If do something that should wake someone up
l Signal or Broadcast

u Always leave shared state variables in a consistent state
l When lock is released, or when waiting

Monitors

u Monitor definition:
l a lock and zero or more condition variables for managing

concurrent access to shared data

u Monitors make things easier:
l “locks” for mutual exclusion
l “condition variables” for scheduling constraints

Monitors Embedded in Languages

u High-level data abstraction that unifies handling of:
l Shared data, operations on it, synchronization and scheduling

• All operations on data structure have single (implicit) lock
• An operation can relinquish control and wait on a condition

l Java from Sun; Mesa/Cedar from Xerox PARC

u Monitors are easy and safe
l Compiler can check, lock is implicit (cannot be forgotten)

// only one process at time can update instance of Q
class Q {

int head, tail; // shared data
void enqueue(v) { locked access to Q instance }
int dequeue() { locked access to Q instance }

}

Monitor: Hide Mutual Exclusion

u Brinch-Hansen (73), Hoare (74)
u Procedures are mutually exclusive

Shared
data

...

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

u Wait(condition)
l Block on “condition”

u Signal(condition)
l Wakeup a blocked process

on “condition”
Shared

data

...
Entry queue

procedures

x
y

Queues
associated
with x, y
conditions

Producer-Consumer with Monitors

monitor ProdCons
condition full, empty;

procedure Add;
begin

if (buffer is full)
wait(full);

put item into buffer;
if (only one item)

signal(empty);
end;

procedure Remove;
begin

if (buffer is empty)
wait(empty);

remove an item;
if (buffer was full)

signal(full);
end;

procedure Producer
begin

while true do
begin

produce an item
ProdCons.Add();

end;
end;

procedure Consumer
begin

while true do
begin

ProdCons.Remove();
consume an item;

end;
end;

Hoare’s Signal Implementation (MOS p137)

u Run the signaled thread
immediately and suspend
the current one (Hoare)

u What if the current thread
has more things to do?

if (only one item)
signal(empty);

something else

end;

34

monitor ProdCons
condition full, empty;

procedure Enter;
begin

if (buffer is full)
wait(full);

put item into buffer;
if (only one item)

signal(empty);
end;

procedure Remove;
begin

if (buffer is empty)
wait(empty);

remove an item;
if (buffer was full)

signal(full);
end;

Hansen’s Signal Implementation (MOS p 137)

u Signal must be the last
statement of a monitor
procedure

u Exit the monitor

u Any issue with this
approach?

35

monitor ProdCons
condition full, empty;

procedure Enter;
begin

if (buffer is full)
wait(full);

put item into buffer;
if (only one item)

signal(empty);
end;

procedure Remove;
begin

if (buffer is empty)
wait(empty);

remove an item;
if (buffer was full)

signal(full);
end;

Mesa Signal Implementation

u Continues its execution
if (only one item)

signal(empty);
something else

end;

l B. W. Lampson and D. D. Redell, “Experience with Processes and
Monitors in Mesa,” Communiction of the ACM, 23(2):105-117. 1980.

u This is easy to implement!

u Issues?

36

Evolution of Monitors
u Brinch-Hansen (73) and Hoare Monitor (74)

l Concept, but no implementation
l Requires Signal to be the last statement (Hansen)
l Requires relinquishing CPU to waiting signaled thread (Hoare)

u Mesa Language (77)
l Monitor in language, but signaler keeps mutex and CPU
l Waiter simply put on ready queue, with no special priority

u Modula-2+ (84) and Modula-3 (88)
l Explicit LOCK primitive
l Mesa-style monitor

u Pthreads (95)
l Started standard effort around 1989
l Defined by ANSI/IEEE POSIX 1003.1 Runtime library

u Java threads
l James Gosling in early 1990s without threads
l Use most of the Pthreads primitives

45

Barrier Synchronization

u Thread A and Thread B
want to meet at a
particular point

u The one to get there first
waits for the other one to
reach that point before
proceeding

u Then both go forward

Thread A Thread B

46

Using Semaphores as A Barrier

u Use two semaphores?
init(s1, 0);
init(s2, 0);

u What about more than two threads?

Thread A
…

V(s1);
P(s2);

…

Thread B
…

V(s2);
P(s1);

…

47

Barrier Primitive

u Functions
l Take a barrier variable
l Broadcast to n-1 threads
l When barrier variable has

reached n, go forward

u Hardware support on
some parallel machines
l Multicast network
l Counting logic
l User-level barrier variables

Thread 1
…

Barrier(b);
…

Thread n
…

Barrier(b);
…

. . .

Barrier
variable

48

Equivalence

u Semaphores
l Good for signaling and fine for simple mutex
l Not good for mutex in general, since easy to introduce a bug

with ordering against other semaphores
• Locks are only for mutex, so clearer and less bug-prone

u Monitors
l Good for scheduling and mutex
l May be costly for simple signaling

49

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Barriers

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

50

Summary

u Mutex alone are not enough
u Semaphores
u Monitors

l Mesa-style monitor and its idiom
u Barriers

