
COS 318: Operating Systems

Protection and Virtual Memory



2

Outline

u Protection Mechanisms and OS Structures

u Virtual Memory: Protection and Address Translation



3

Some Protection Goals

u CPU
l Allow kernel to take CPU away to prevent a user from 

using CPU forever
l Users should not have this ability

u Memory
l Prevent a user from accessing others’ data
l Prevent users from modifying kernel code and data 

structures

u I/O
l Prevent users from performing “illegal” I/Os

u Difference between protection and security?



4

Architecture Support for CPU Protection

An interrupt or exception/trap (INT)

A special instruction (IRET)

Kernel (privileged) mode
• Regular instructions
• Privileged instructions
• Access user memory
• Access kernel memory

User mode
• Regular instructions
• Access user memory

• Privileged Mode



5

Privileged Instruction Examples

u Memory address mapping
u Flush or invalidate data cache
u Invalidate TLB entries
u Load and read system registers
u Change processor modes from kernel to user
u Change the voltage and frequency of processor
u Halt a processor
u Reset a processor
u Perform I/O operations

• Q: Other architectural support for protection in system?



6

OS Structures and Protection: Monolithic

u All kernel routines are together, 
linked in single large executable
l Each can call any other
l Services and utilities

u Provides a system call API
u Examples: 

l Linux, BSD Unix, Windows, …
u Pros

l Shared kernel space
l Good performance

u Cons
l Instability: crash in any procedure 

brings system down
l Unweildy/difficult to maintain, extend

Kernel
(many things)

User
program

User
program

syscall syscall



7

Layered Structure

u Hiding information at each layer
u Layered dependency 
u Examples

l THE (6 layers)
• Mostly for functionality splitting

l MS-DOS (4 layers)
u Pros

l Layered abstraction
• Separation of concerns, elegance

u Q: Cons?
l Inefficiency
l Inflexibility

Hardware

Level 1

Level 2

Level N
...



8

Possible Implementation: Protection Rings

Level 0

Level 1

Level 2
Level 3

Operating system
kernel

Operating system
services

Applications

Privileged instructions
can be executed only
when current privileged
level (CPR) is 0



9

Microkernel Structure
u Services are regular processes
u Micro-kernel obtains services for 

users by messaging with services
u Examples: 

l Mach, Taos, L4, OS-X
u Pros?

l Flexibility to modify services
l Fault isolation

u Cons?
l Inefficient (boundary crossings)
l Inconvenient to share data 

between kernel and services
l Just shifts the problem, to level 

with less protection? Testing?

entry

User
program

OS
Services

µ-kernel

syscall



10

Virtual Machine Monitor

VM1

OS1

Virtual Machine

u Virtual machine monitor
l Virtualize hardware
l Run several OSes
l Examples

• IBM VM/370
• Java VM
• VMWare, Xen

u What would you use a 
virtual machine for?

Apps

VMk

OSk

Apps

. . .

Raw Hardware



13

Memory Management: The Big Picture

u DRAM is fast, but relatively expensive
u Disk is inexpensive, but slow

l 100X less expensive
l 100,000X longer latency
l 1000X less bandwidth

u Goals
l Make programmers not have to worry 

about this
l Run programs efficiently
l Make the system safe

CPU

Memory

Disk



14

Problems

u Memory capacity
l All my process’s data don’t fit in physical memory
l There are many processes

u Locating data in memory
l Where are my data in memory and where are yours?

u Protection
l A user process should not do bad things to other 

processes: write or read their data without permission
l A user process should not crash the system

u Scalability
l The more processes a system can handle, the better



15

Consider A Simple System

u Only physical memory
l Applications use it directly

u Run three processes
l Email, browser, gcc

u What if 
l browser writes at x7050?
l email needs to expand?
l browser needs more 

memory than is on the 
machine?

OS

email

browser

gcc

Free x0000

x2500

x5000

x7000

x9000



Need to Handle

u Protection

u Finiteness

l Not having entire application/data in memory at once

l Relocation

l Not having programmer worry about it (too much)

16



18

Handling Protection

Check legality
u Errors/malice in one process should not affect others
u For each process, check each load and store instruction 

to allow only legal memory references

CPU
Check 

Legality
Physical
memory

address

error

data

gcc



Handling Finiteness

Address Translation: Mapping and Relocation
u A process should be able to run regardless of physical 

memory size or where its data are physically placed
u Give each process a large, static “fake” address space 

that is large and contiguous and entirely its own
u As process runs, translate (map) load/store to physical 

addresses. Relocate (change mappings) as needed

CPU
Check &

Translate; 
Relocate 

when needed

Physical
memory

address

data

email

Disk



20

Virtual Memory

u Flexible
l Processes (and data) can move in memory as they 

execute, and can be part in memory and part on disk
u Simple

l Applications generate loads and stores to addresses in 
the contiguous, large, “fake” address space

u Efficient
l 20/80 rule: 20% of memory gets 80% of references
l Keep the 20% in physical memory (a form of caching)

u Protective
l Protection check integrated with translation mechanism



21

Address Mapping
u Must have some “mapping” mechanism

l Map virtual to physical addresses in RAM or disk

u Mapping must have some granularity
l Finer granularity provides more flexibility
l Finer granularity requires more mapping information



22

Generic Address Translation: the MMU
u CPU view

l Virtual addresses
l Each process has its own 

memory space [0, high] –
virtual address space

u Memory or I/O device view
l Physical addresses
l Fragmented, changing

u Memory Management Unit 
(MMU) translates virtual 
address into physical address 
for each load and store

u Combination of hardware and 
(privileged) software controls 
the translation, and relocation

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address



23

Where to Keep Translation Information?
Goals of translation
u Implicit translation for each 
memory reference
u A hit should be very fast
u Trigger an exception on a miss
u Protect from user’s errors

Registers

L1

Memory

Disk

2-4x

100-500x

20M-30Mx

Paging

L2-L3 10-20x



Address Translation Methods

u Base and Bound
u Segmentation
u Paging
u Multilevel translation
u Inverted page tables



Base and Bound

virtual memory                        physical memory
0 

code                 6250 (base)

data

bound
stack               6250+bound

Each program loaded into contiguous
regions of physical memory. 
Example on next slide



26

Base and Bound (or Limit) Example: Cray-I
u Protection

l A process can only access physical 
memory in [base, base+bound]

u On a context switch
l Save/restore base, bound regs

u Pros
l Simple
l Inexpensive (Hardware cost: 2 

registers, adder, comparator)
u Cons

l Can’t fit all processes in memory, have 
to swap

l Fragmentation in memory
l Relocate processes when they grow?
l Compare and add on every instruction
l Very coarse grained

virtual address

base

bound

error

+

>

physical address

Why not have multiple contiguous segments for each process, and 
keep their base/bound data in hardware?



27

Segmentation
u Every process has table of 

(seg, size) for its segments
u Treats (seg, size) as a finer-

grained (base, bound)
u Protection

l Every entry contains access rights
u On a context switch

l Save/restore table in kernel memory

physical address

+

segment offset

Virtual address

seg size

...

>
error



Segmentation Example

(assume 2 bit segment ID, 12 bit segment offset)

v-segment #       p-segment          segment                                            physical memory
start                   size                                              

code   (00)          0x4000              0x700                                         
data    (01)          0                        0x500
- (10)           0                        0
stack  (11)           0x2000              0x1000

virtual memory

0
6ff

1000
14ff

3000

3fff

0

4ff

2000

2fff

4000

46ff



Segmentation Example (Cont’d)

Virtual memory  for  strlen(x)

Main: 240                store 1108, r2
244                 store pc+8, r31
248                 jump 360
24c
…

strlen: 360             loadbyte (r2), r3
…
420               jump (r31)
… 

x: 1108                a b c \0
…

physical memory  for  strlen(x)

x:     108                a b c \0
…

Main: 4240                store 108, r2
4244                 store pc+8, r31
4248                 jump 4360
424c
…

strlen: 4360             loadbyte (r2), r3
…
4420               jump (r31)
…     



30

Segmentation

u Pros
lProvides logical protection: programmer “knows program” 

and therefore how to design and manage segments
lTherefore efficient
lEasy to share data

u Q: Cons?



31

Paging

u Use a fixed size unit called 
page instead of segment

u Use page table to translate
u Various bits in each entry
u Context switch

l Similar to segmentation

u What should page size be?

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size



Paging example

virtual memory

a
b
c
d

e
f
g
h

i
j
k
l

physical memory

i
j
k
l

e
f
g
h
a
b
c
d

4

3

1

page size: 4 bytes

0

4

8

12

16

0
1
2

VP# PP#



33

How Many PTEs Do We Need?

u Assume 4KB page
l Needs “low order” 12 bits to address byte within page

u Worst case for 32-bit address machine
l 20 bits for virtual page no., so 220 PTEs for a process
l # of processes ´ 220

l 220 PTEs per page table (~4Mbytes), but there might be 
10K processes. They won’t even fit in memory together

u What about 64-bit address machine?
l # of processes ´ 252

l A page table cannot fit in a disk (252 PTEs = 16PBytes)!



34

Paging

u Pros
l Simple allocation
l Easy to share
l Hardware likes fixed sizes (in fact, powers of two)

u Cons
l Big table
l PTEs even for big holes in memory



Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

Every segment has 
its own page table

Size is # of pages in 
that segment 

Benefit?



36

Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address

What does this buy us? 



Segmentation with 2-level Paging (30386)

Segmentation with paging. 
with a two-level paging 
scheme.



38

Inverted Page Tables

u Main idea
l One PTE for each 

physical page frame
l Hash (Vpage, pid) to 

Ppage#

u Pros
l Small page table for 

large address space
u Cons

l Lookup is difficult 
l Overhead of managing 

hash table, etc

pid vpage offset

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table

pid vpage



39

Making Translation Lookups Faster: TLBs

u Programs only know virtual addresses
l Every program or process starts from 0 to high address

u Every virtual address must be translated
l May involve walking through a hierarchical page table
l Since page table is in memory, a program memory 

access may require several actual memory accesses
u Solution

l Cache recent virtual to physical translations, i.e. 
“active” part of page table, in a very fast memory

l If virtual address hits in TLB, use cached translation
l Typically fully associative cache, match against entries



TLB and Page Table Translation

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset



41

What’s in the TLB?

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#



42

Bits in a TLB Entry

u Common (necessary) bits
l Virtual page number
l Physical page number: translated address
l Valid bit
l Access bits: kernel and user (none, read, write)

u Optional (useful) bits
l Process tag
l Reference bit
l Modify bit
l Cacheable bit



43

Hardware-Controlled TLB

u On a TLB hit, hardware checks the valid bit
l If valid, pointer to page frame in memory
l If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction

u On a TLB miss
l HW checks if page containing the PTE is valid (in 

memory), and if so loads the PTE into the TLB
• Write back and replace a TLB entry if there is no free entry

l If the page containing the PTE is invalid, or if there is a 
protection fault, generate a fault

l VM software performs fault handling
l Restart the CPU



44

Software-Controlled TLB

u On TLB hit, same as in hardware-controlled TLB
u On a miss in TLB, software is invoked

l Write back if there is no free entry
l Check if the page containing the PTE is in memory
l If not, perform page fault handling
l Load the PTE into the TLB
l Restart the faulting instruction



46

Hardware Cache vs TLB

u Similarities
l Cache a portion of memory
l Write back on a miss

u Differences
l Associativity
l Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss



47

TLB Related Issues

u What TLB entry to replace?
l Random
l Pseudo LRU

u What happens on a context switch?
l Process tag: invalidate appropriate TLB entries
l No process tag: Invalidate the entire TLB contents

u What happens when changing a page table entry?
l Change the entry in memory
l Invalidate the TLB entry



48

Consistency Issues

u “Snoopy” cache protocols (hardware)
l Maintain consistency with DRAM, even when DMA 

happens
u Consistency between DRAM and TLBs (software)

l You need to flush related TLBs whenever changing a 
page table entry in memory

u Consistency across processors in multiprocessor
l Q: What happens when a processor changes a PTE?



Summary: Virtual Memory

u Virtual Memory
l Virtualization makes software development easier and enables 

memory resource utilization better
l Separate address spaces provide protection and isolate faults

u Address Translation
l Translate every memory operation using table (page table, 

segment table). 
l Speed: cache frequently used translations

u Result
l Every process has a private address space
l Programs run independently of actual physical memory 

addresses used, and actual memory size
l Protection: processes only access memory they are allowed to


