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Topics

u So far:
l Management of CPU and concurrency
l Management of main memory and virtual memory

u Next: Management of the I/O system
l Interacting with I/O devices 
l Device drivers
l Storage Devices

u Then, File Systems
l File System Structure
l Naming and Directories
l Efficiency/Performance
l Reliability and Protection
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Input and Output

u A computer 
l Computation (CPU, memory hierarchy)
l Move data into and out of a system (locketween I/O devices 

and memory hierarchy)
u Challenges with I/O devices

l Different categories with different characteristics: storage, 
networking, displays, keyboard, mouse ...

l Large number of device drivers to support
l Device drivers run in kernel mode and can crash systems

u Goals of the OS
l Provide a generic, consistent, convenient and reliable way to 

access I/O devices
l Achieve potential I/O performance in a system



4

Revisit Hardware
u Compute hardware

l CPU cores and caches
l Memory
l I/O
l Controllers and logic

u I/O Hardware
l I/O bus or interconnect
l I/O device
l I/O controller or adapter

• Often on parent board
• Cable connects it to device
• Often using standard interfaces: IDE, 

SATA, SCSI, USB, FireWire…
• Has registers for control, data signals
• Processor gives commands and/or 

data to controller to do I/O

I/O bus

Network

CPU

Memory I/O bridge

CPUCPUCPU
$

CPU
Chip



I/O Hierarchy

u As with memory, fast I/O with less “capacity” near CPU, 
slower I/O with greater “capacity” further away
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A typical PC bus structure



7

Performance Characteristics
u Overhead

l CPU time to initiate an operation
u Latency

l Time to transfer one bit
l Overhead + time for 1 bit to reach 

destination
u Bandwidth

l Rate at which subsequent bits are 
transferred or reach destination

l Bits/sec or Bytes/sec
u In general

l Different transfer rates
l Abstraction of byte transfers
l Amortize overhead over block of 

bytes as transfer unit

Data transfer

Device Transfer rate
Keyboard 10Bytes/sec

Mouse 100Bytes/sec
… …

10GE NIC 1.2GBytes/sec

Initiate

Time



Interacting with Devices

u A device has an interface, and an implementation
l Interface exposed to external software, typically by device 

controller
l Implementation may be hardware, firmware, software

u Mechanisms
l Programmed I/O (PIO)
l Interrupts
l Direct Memory Access (DMA)
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Programmed I/O
u Example

l RS-232 serial port
u Simple serial controller

l Status registers (ready, busy, … )
l Data register

u Output
CPU:
l Wait until device is not “busy”
l Write data to “data” register
l Tell device “ready”
Device
l Wait until “ready”
l Clear “ready” and set “busy”
l Take data from “data” register
l Clear “busy”

CPU

Memory

Serial
controller

I/O Bus

Busy Ready …
Data



Polling in Programmed I/O 

u Wait until device is not “busy”
l A polling loop

u Advantages
l Simple

u Disadvantage
l Slow
l Waste CPU cycles

u Example
l If a device runs 100 operations / second, CPU may need to 

wait for 10 msec or 10,000,000 CPU cycles (1Ghz CPU)
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Interrupt-Driven Device
u Allows CPU to avoid polling
u Example: Mouse
u Simple mouse controller

l Status registers (done, int, …)
l Data registers (ΔX, ΔY, button)

u Input
Mouse:
l Wait until “done”
l Store ΔX, ΔY, and button into 

data registers
l Raise interrupt
CPU (interrupt handler)
l Clear “done”
l Move ΔX, ΔY, and button into 

kernel buffer
l Set “done”
l Call scheduler

CPU

Memory

Mouse
controller

I/O Bus

Done …
ΔX
ΔY

Int

Button



Another Problem

u CPU has to copy data from memory to device
u Takes many CPU cycles, esp for larger I/Os

u Can we get the CPU out of the copying loop, so it can 
do other things in parallel while data are being copied?
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Direct Memory Access (DMA)
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Direct Memory Access (DMA)
u Example of disk
u A simple disk adaptor

l Status register (ready, …)
l DMA command
l DMA memory address and size
l DMA data buffer

u DMA Write
CPU:
l Wait until DMA device is “ready”
l Clear “ready”
l Set DMAWrite, address, size
l Set “start”
l Block current thread/process
Disk adaptor:
l DMA data to device

(size--; address++)
l Interrupt when “size == 0”
CPU (interrupt handler):
l Put the blocked thread/process into 

ready queue
Disk: Move data to disk

CPU

Memory

Disk
adaptor

I/O Bus

Ready …

address size

Int

DMA buffer

DMA Command
Start

Data

Kernel 

Data Data



Where Are these I/O “Registers?”

u Explicit I/O “ports” for devices
l Accessed by privileged instructions (in, out)

u Memory mapped I/O
l A portion of physical memory for each device
l Advantages

• Simple and uniform
• CPU instructions can access these “registers” as 

memory
l Issues

• These memory locations should not be cached. Why?
• Mark them not cacheable

u Both approaches are used
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Device I/O port locations on PCs (partial)



I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware
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Drivers

I/O Interface and Device Drivers
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I/O Interface and Device Drivers

u I/O system calls encapsulate device behaviors in 
generic classes

u Device-driver layer hides differences among I/O 
controllers from kernel

u Devices vary in many dimensions
l Character-stream or block
l Sequential or random-access
l Sharable or dedicated
l Speed of operation
l Read-write, read only, or write only



Characteristics of I/O Devices
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What Does A Device Driver Do?

u Provide “the rest of the OS” with APIs 
l Init, Open, Close, Read, Write, …

u Interface with controllers
l Commands and data transfers with hardware controllers

u Driver operations
l Initialize devices
l Interpret outstanding requests
l Manage data transfers
l Accept and process interrupts
l Maintain the integrity of driver and kernel data structures
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Device Driver Operations 

u Init ( deviceNumber )
l Initialize hardware

u Open( deviceNumber )
l Initialize driver and allocate resources

u Close( deviceNumber )
l Cleanup, deallocate, and possibly turnoff

u Device driver type-specific operations
l Character:  variable sized data transfer
l Terminal: character driver with terminal control
l Block: fixed sized block data transfer 
l Network: streams for networking
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Character and Block Interfaces

u Character device interface (keyboard, mouse, ports)
l read( deviceNumber, bufferAddr, size )

• Reads “size” bytes from a byte stream device to “bufferAddr”
l write( deviceNumber, bufferAddr, size )

• Write “size” bytes from “bufferAddr” to a byte stream device

u Block device interface (disk drives)
l read( deviceNumber, deviceAddr, bufferAddr )

• Transfer a block of data from “deviceAddr” to “bufferAddr”
l write( deviceNumber, deviceAddr, bufferAddr )

• Transfer a block of data from “bufferAddr” to “deviceAddr”
l seek( deviceNumber, deviceAddress )

• Move the head to the correct position
• Usually not necessary



Network Devices

u Different enough from the block & character devices to 
have own interface

u Unix and Windows/NT include socket interface

u Approaches vary widely (pipes, FIFOs, streams, 
queues, mailboxes)



Clocks and Timers

u Provide current time, elapsed time, timer

u if programmable interval time used for timings, periodic 
interrupts

u ioctl (on UNIX) covers odd aspects of I/O such as 
clocks and timers
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Unix Device Driver Entry Points
u init()

l Initialize hardware
u start()

l Boot time initialization
u open(dev, flag, id)and close(dev, flag, id)

l Initialization resources for read or write and release resources
u halt()

l Call before the system is shutdown
u intr(vector)

l Called by the kernel on a hardware interrupt
u read(…) and write() calls

l Data transfer
u poll(pri)

l Called by the kernel 25 to 100 times a second
u ioctl(dev, cmd, arg, mode)

l special request processing
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Synchronous and Asynchronous I/O

u Synchronous I/O
l Read() or write() will block a user process until its completion
l Easy to use and understand
l OS overlaps synchronous I/O with another process’s excecution
l Blocking versus non-blocking variants

u Asynchronous I/O
l Process runs while I/O executes 
l Let user process itself do other things before I/O completion
l I/O completion will notify the user process



Synchronous Blocking Read
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Application Kernel 

syscall
Switch to

Kernel context

block

HW Device 

DMA
read

Driver Initiates
DMA read

Copy to
User buf

Interrupt

return

Switch to
user context

Unblock
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Synchronous Blocking Read
u A process issues a read call which executes a system call
u System call code checks for correctness and buffer cache
u If it needs to perform I/O, it will issue a device driver call
u Device driver allocates a buffer for read and schedules I/O
u Initiate DMA read transfer
u Block the current process and schedule a ready process
u Device controller performs DMA read transfer
u Device sends an interrupt on completion
u Interrupt handler wakes up blocked process (make it ready)
u Move data from kernel buffer to user buffer
u System call returns to user code
u User process continues



Asynchronous Read
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Application Kernel 

aio_read
Switch toKernel context

HW Device 

DMA
read

Driver initiates
DMA read

Copy to
User buf

Interrupt

Do
other 
work

aio_return

incomplete

aio_return

Complete

Complete 



Asynchronous I/O

POSIX P1003.4 Asynchronous I/O interface functions:
(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…)

u aio_read: begin asynchronous read 
u aio_write: begin asynchronous write 
u aio_cancel: cancel asynchronous read/write requests 
u aio_error: retrieve Asynchronous I/O error status 
u aio_fsync: asynchronously force I/O completion, and 

sets errno to ENOSYS 
u aio_return: retrieve status of Asynchronous I/O operation 
u aio_suspend: suspend until Asynchronous I/O completes 
u lio_listio: issue list of I/O requests 
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Other Device Driver Design Issues

u Statically install device drivers
l Reboot OS to install a new device driver

u Dynamically download device drivers
l No reboot, but use an indirection
l Load drivers into kernel memory
l Install entry points and maintain related data structures
l Initialize the device drivers



Dynamic Binding of Device Drivers

u Indirection
l Indirect table for all

device driver entry points
u Download a driver

l Allocate kernel memory
l Store driver code
l Link up all entry points

u Delete a driver
l Unlink entry points
l Deallocate kernel memory
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Driver (dev 0)
Open:
Read:
Write:

Driver (dev 1)
Open:
Read:
Write:

open
read
write

open
read
write

Driver (dev 1)
Open:
Read:
Write:

Open(1,…)
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Issues with Device Drivers

u Flexible for users, ISVs and IHVs
l Users can download and install device drivers
l Vendors can work with open hardware platforms

u Dangerous
l Device drivers run in kernel mode
l Bad device drivers can cause kernel crashes and introduce 

security holes

u Progress on making device drivers more secure

u How much of OS code is device drivers?



I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware



Kernel I/O Subsystem



Kernel I/O subsystem:  “Scheduling”

u Some I/O request ordering via per-device queue
u Some OSes try fairness

Device status table



Kernel I/O subsystem (contd.)
u Buffering - store data in memory while transferring between devices

l To cope with device speed mismatch 
l To cope with device transfer size mismatch (e.g., packets in networking)

u How to deal with address translation?
l I/O devices see physical memory, but programs use virtual memory
l E.g. DMA may require contiguous physical addresses

u Caching - fast memory holding copy of data
l Reduce need to go to devices, key to performance

u Spooling - hold output for a device
l If a device can serve only one request at a time, i.e., printing
l Used to avoid deadlock problems



Kernel I/O Subsystem (contd.)

u Error handling
l OS can recover from disk read, device unavailable, transient 

write failures
l Most return an error no. or code when I/O request fails 
l System error logs hold problem reports

u Protection 
l User process may accidentally or purposefully attempt to 

disrupt normal operation via illegal I/O instructions
l All I/O instructions defined to be privileged
l I/O must be performed via system calls

• Memory-mapped and I/O port locations must be protected too
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Summary

u IO Devices
l Programmed I/O is simple but inefficient
l Interrupt mechanism supports overlap of CPU with I/O
l DMA is efficient, but requires sophisticated software

u Synchronous and Asynchronous I/O
l Asynchronous I/O allows user code to perform overlapping

u Device drivers
l Dominate the code size of OS
l Dynamic binding is desirable for many devices
l Device drivers can introduce security holes 
l Progress on secure code for device drivers but completely 

removing device driver security is still an open problem
u Role of device-independent kernel software


