
COS 318: Operating Systems

Virtual Memory Design Issues: 
Address Translation
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Virtual Memory Design Issues

Any real design must take positions on or have solutions to:

u Protection granularity

u Enabling memory sharing
l Code, libraries, communication

u Flexibility and growth/shrinking of processes

u Efficiency
l Translation efficiency (TLB as cache)
l Access efficiency

• Access time = h × memory access time + ( 1 - h ) × disk access time
• E.g. Suppose memory access time = 100ns, disk access time = 10ms
• If h = 90%, VM access time is 1ms!

u Process forking and copy on write
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Copy on Write

u Idea of Copy-on-Write
l Child process inherits copy of parent’s address space on fork
l But don’t really want to make a copy of all data upon fork
l Would like to share as far as possible and make own copy 

only “on-demand”, i.e. upon a write 

u A way to do this is to protect data as read-only in both parent 
and child on fork

l When a write is done by either, a protection fault occurs and a copy 
is made



Recall Address translation: Base and Bound
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◆ Pros: Simple, fast, cheap, safe, can relocate
◆ Cons: very coarse-grained protection (all or nothing)

● Can’t keep program from accidentally overwriting its own code
● Can’t share subsets of code/data with other processes (all or nothing)
● Can’t grow stack/heap as needed (stop program, change reg, …)



Base and Bound
u Protection granularity: Entire process space (code+data)

l Can’t keep program from accidentally overwriting its own code
u Sharing

l Can’t share subsets of code/data with other processes (all or nothing)

u Growth/shrinking of processes
l Can’t grow stack/heap as needed (stop program, change reg, …)

u Efficiency
l Translation: fast (simple and cheap)
l Access

• External fragmentation leads to inefficient use of physical memory and hence 
high miss rates

u Process forking and copy on write
l Protection granularity is entire process space: no benefit from copy on write



Segmentation

u A segment is a contiguous region of virtual memory
u Every process has a segment table (in hardware)

l Entry in table per segment

u Segment can be located anywhere in physical memory
l Each segment has: start, length, access permission

u Protection is at granularity of segments
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Segmentation
u Protection granularity: A (user-defined) segment

l Protects code separately from data
u Sharing

l Processes can share segments: Same start, length, same/different access 
permissions

u Growth/shrinking of processes
l Can grow segments independently, may need to relocate

u Efficiency
l Translation: fast (few segments so table can be in hardware)
l Access

• Better than base+bound, but still external fragmentation due to holes

u Process forking and copy on write
l Can do on a segment granularity: copy entire segment on first write to it



Segments Enable Copy-on-Write

u To an extent …
l Copy segment table into child, not entire address space
l Mark all parent and child segments read-only
l Start child process; return to parent
l If child or parent writes to a segment (e.g. stack, heap)

• Trap into kernel
• At this point, make a copy of the data

u But segmentation has other problems too:
l Complex memory management due to external fragmentation

• Need to find chunk of particular size
• Wasted space between chunks/segments
• May need to rearrange memory from time to time to make room 

for new segment or to grow segment



Paging
u Manage memory in fixed size units, or pages
u Finding a free page is easy

l Effectively a bitmap allocation: 0011111100000001100
l Every bit represents one physical page frame

u Every process has its own page table
l Stored in physical memory
l Supported by a couple of hardware registers:

• Pointer to start of page table
• Page table length

u Recall fancier structures: segmentation+paging, multi-level PT
l Better for sparse virtual address spaces
l E.g. per-processor heaps, per-thread stacks, memory mapped files, 

dynamically linked libraries, …
l Eliminate need for page table entries for address space “holes”
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Copy on Write with Paging

u UNIX fork with copy on write
l Copy page table of parent into child process
l Mark all pages (in new and old page tables) as read-only
l Trap into kernel on write (in child or parent)
l Copy page
l Mark both as writeable
l Resume execution
l Finer grained than with segments
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Shared Pages
u PTEs from two processes share 

the same physical pages
l Entries in both page tables to point to 

same page frames
l What use cases?

u Implementation issues
l What if you terminate a process 

with shared pages
l Paging in/out shared pages
l Deriving the working set for a 

process with shared pages
l Pinning/unpinning shared pages Page table 2
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Pinning (or Locking) Page Frames
u When do you need it?

l When DMA is in progress, you don’t want to page the pages out 
to avoid CPU from overwriting the pages

u Mechanism?
l A data structure to remember all pinned pages
l Paging algorithm checks the data structure to decide on page 

replacement
l Special calls to pin and unpin certain pages
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Zeroing Pages
u Initialize pages to all zero values

l Heap and static data are initialized
u How to implement?

l On the first page fault on a data page or stack page, zero it
l Or, have a special thread zeroing pages in the background



Efficient address translation

u Recall translation lookaside buffer (TLB)
l Cache of recent virtual page -> physical page translations
l If cache hit, use translation
l If cache miss, walk (perhaps multi-level) page table
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TLB Performance

u Cost of translation =
Cost of TLB lookup + Prob(TLB miss) * cost of page table lookup

u Cost of a TLB miss on a modern processor?
l Cost of multi-level page table walk
l Software-controlled: plus cost of trap handler entry/exit
l Use additional caching principles: multi-level caching, etc

TLB is important: 
Intel i7 Processor Chip



Intel i7 Memory hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core



Problem with Translation Slowdown

u What is the cost of a first level TLB miss?
l Second level TLB lookup

u What is the cost of a second level TLB miss?
l x86: 2-4 level page table walk 

u Problem: Do we need to wait for the address translation 
in order to look up the caches (for code and data)?



Virtually vs. Physically Addressed Caches

u It can be too slow to first access TLB to find physical 
address, then look up address in the cache

u Instead, first level cache is virtually addressed

u In parallel with cache lookup using virtual address, 
access TLB to generate physical address in case of a 
cache miss



Virtually addressed caches
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Physically vs virtually addressed cache

Physically addressed cache

Virtually addressed cache

u Problems with virtually addressed cache?
Diagram copied



Aliasing in virtually addressed cache

u Solution? Diagram copied



When do TLBs work/not work, Part I?

u Video Frame 
Buffer: 32 bits x
1K x 1K = 4MB
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Superpages

u On many systems, TLB entry can be
l A page
l A superpage: a set of contiguous pages

u x86: superpage is a set of pages with one PTE
l x86 TLB entries

• 4KB
• 2MB
• 1GB
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When do TLBs Work/Not Work, Part 2

u What happens when the OS changes the permissions 
on a page?
l For demand paging, copy on write, zero on reference, …

u On a single-core processor?

u On a multicore?



When do TLBs Work/Not Work, Part 3

u What happens on a context switch?
l Keep using TLB?
l Flush TLB?

u Solution: Tagged TLB
l Each TLB entry has process ID
l TLB hit only if process ID matches current process
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Summary
u Must consider many issues

l Global and local replacement strategies
l Management of backing store
l Primitive operations

• Pin/lock pages
• Zero pages
• Shared pages
• Copy-on-write

u Real system designs are complex


