
COS 318: Operating Systems

Deadlock



2

Today’s Topics

u Conditions for deadlock
u Strategies to deal with deadlocks



3

Definitions
u Use “processes” and “threads” interchangeably (1 thread per proc)
u Resource: a (passive) object that can be granted to a thread and 

that it needs to do its job
l Preemptable: CPU, Memory (can be taken away from thread without harm)
l Non-preemptable: files, mutex, CD recorder ... (can’t just be taken away)

u Operations on a resource: Request, Use, Release

u Starvation: At least one thread waits forever for resource
u Deadlock: A set of processes have a deadlock if every process in 

the set is waiting for an event that only another process in the set 
can cause

u Livelock?

u In general, deadlock happens with non-preemptable resources
l Or resource can be taken away and reallocated to alleviate deadlock



4

Example from CPU Scheduling

uT1 at priority 4, T2 at priority 1 and T2 holds lock L 

uT1 needs lock, but for it to get lock T2 must release lock

uT2 needs to get on CPU to release lock

uBut T2 does not get CPU until T1 gets lock and makes 
progress and gives up CPU, and T1 does not get lock 
until T2 gets CPU

u Introducing another thread T3 at priority 3 creates a less 
contrived situation

l T3 gets CPU and doesn’t let T2 run to release lock as it is 
higher priority



5

Another Example

u A utility program
l Copy a file from tape to disk
l Print the file to printer
l Two processes running program

u Resources
l Tape
l Disk
l Printer

u A deadlock
l A holds tape and disk, 
l B holds printer,
l A requests for a printer
l B requests for tape and disk

A

B

Tape

A holds tape and disk, 

B holds printer

A requests printer

B requests tape and disk



6

Resource Allocation Graph

u Process A is holding 
resource R

u Process B requests 
resource S 

Example: 
u A requests S while holding R

u B requests R while holding S

u A cycle in resource allocation 
graph Þ deadlock

A R

B S

A S

R B

How do you deal with multiple instances of a resource?



7

Conditions for Deadlock

u Mutual exclusion condition
l A resource is assigned to no more than one process at a time

u Hold and Wait
l Processes holding resources can request new resources 

while continuing to hold the old resources

u No preemption
l Resources cannot be taken away once obtained

u Circular chain of requests
l One process waits for another in a circular fashion

u Question
l Are all conditions necessary?



8

Eliminate Competition for Resources?

u If run A to completion and then 
run B, there will be no deadlock

u Generalize this idea for all 
processes? 

u Is this a good idea for CPU 
scheduling?

A S

BR

Previous example

S

RR

S



9

Strategies

u Ostrich Algorithm
u Detection and recovery

l Fix the problem afterwards
u Dynamic avoidance

l Careful allocation of resources to avoid deadlock
u Prevention

l Negate one of the four conditions



10

Ignore the Problem

u The OS kernel locks up
l Reboot

u Device driver locks up
l Remove the device
l Restart

u An application hangs (“not responding”)
l Terminate the application and restart
l Familiar with this?

u An application runs for a while and then hangs
l Checkpoint the application
l Change the environment (reboot OS)
l Restart from the previous checkpoint



11

Detection and Recovery

u Detection
l Scan resource graph
l Detect cycles

u Recovery (difficult)
l Terminate some process/threads (can you always do this?)
l Roll back actions of deadlocked threads and retry

• E.g. transactions: all operations are provisional until they have 
the required resources to complete operation

• Roll back a process that holds a needed resource to its last 
checkpoint, releasing resources



12

Deadlock Avoidance

u Always maintain Safety Condition when allocating 
resources:
l Not currently deadlocked
l There is some scheduling order in which every process can 

run to completion (even if all request their max resource needs 
at once)

u Banker’s algorithm (Dijkstra 65)
l Single resource type

• Every process has a credit
• Total resources may not satisfy all credits
• Track resources assigned to and needed by each process
• On every resource allocation, check for Safety Condition



13

Examples (Single Resource Type)

Has Max
P1 2 6
P2 2 3
P3 3 5

Total: 8

Free: 1 

Has Max
P1 4 6
P2 1 3
P3 2 5

Free: 1 

Free: 0 Free: 3 Free: 1

Has Max
P1 2 6
P2 3 3
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 5 5

Has Max
P1 2 6
P2 0 0
P3 0 0

Free: 6

? • Multiple resource types
• Two matrices: “allocated” and “needed”

• See textbook for details
• Can we all be bankers and go home?



14

Prevention: Avoid Mutual Exclusion
u Some resources are not physically sharable

l Printer, tape, etc
u Some can be made sharable

l Read-only files, memory, etc
l Read/write locks

u Some can be virtualized by spooling
l Use storage to virtualize a resource into multiple 

resources, thus eliminating the non-sharable 
(mutually exclusive) resource from the equation

u What about the tape-disk-printer example?

u Process doesn’t have to wait for printer while 
another process is holding it
l Move the problem to disk: much bigger

A B

Spooling



15

Prevention: Avoid Hold and Wait

u Can’t get all resources you need? Don’t hold any

u Two-phase locking
Phase I: 
l Try to lock all resources at the beginning
Phase II: 
l If successful, use the resources and release them
l Otherwise, release all resources and start over

u What about the tape-disk-printer example?



16

Prevention: No Preemption

u Make the scheduler be aware of resource allocation
u Method

l If the system cannot satisfy a request from a process holding 
resources, preempt the process and release all resources

l Schedule it only if the system satisfies all resources
u Alternative

l Preempt the process holding the requested resource
u Copying

l Copying to a buffer to release the resource?
u What about the tape-disk-printer example?



17

Prevention: No Circular Wait

u Impose an order of requests for all resources
u Method

l Assign a unique id to each resource
l All requests must be in an ascending order of the ids

u A variation
l Assign a unique id to each resource
l No process requests a resource lower than what it is holding

u What about the tape-disk-printer example?

A

S

B

R



18

Which Is Your Favorite?

u Ignore the problem
l It is user’s fault

u Detection and recovery
l Fix the problem afterwards

u Dynamic avoidance
l Careful allocation

u Prevention (Negate one of the four conditions)
l Avoid mutual exclusion
l Avoid hold and wait
l No preemption
l No circular wait



19

In Practice

u Ignore the problem for applications
l It is application developers’ job to deal with their deadlocks
l OS provides mechanisms to break applications’ deadlocks

u Kernel should not have any deadlocks
l Use prevention methods
l Most popular is to apply no-circular-wait principle everywhere

u Other application examples
l Routers for a parallel machine (typically use the no-circular-

wait principle)
l Process control in manufacturing



20

Summary

u Deadlock conditions
l Mutual exclusion
l Hold and wait
l No preemption
l Circular chain of requests

u Strategies to deal with deadlocks
l Simpler ways are to negate one of the four conditions


