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Divide-and-conquer recurrences 
 
We reviewed the proof the MergeSort runs in Q(nlogn) time.  This algorithm uses divide and 
conquer: it divides the problem into two smaller subproblems, solves these by applying itself 
recursively, and then combines the solutions to the two subproblems to obtain the solution to the 
original problem.  In the case of MergeSort, each subproblem is half the size of the original (to 
within 1), and the combining step merges the two sorted lists that are the solutions to the two 
subproblems, thereby producing a sorted list that solves the original problem. 
 
One way to do the analysis is to think about the tree of recursive subproblems.  At each level of 
the recursion each input value is in exactly one subproblem.  The time spent to do the merge in a 
subproblem is linear in the size of the subproblem.  Thus the total time to do all the merges at a 
given level of the recursion tree is Q(n), where n is the number of input values in the original 
problem.  Since the maximum subproblem size decreases by at least a constant factor with each 
recursive call, the number of recursion levels is Q(logn).  The total time is the total time per level 
(Q(n)) times the number of levels (Q(logn)), and is thus  Q(nlogn).   (If n is a power of two, as 
Kevin assumed, the subproblem size decreases by a factor of two at each level, but if n is 
arbitrary, the subproblem size decreases by at least a factor of 3/2: the worst-case is from 3 to 2.) 
 
If n is an exact power of 2, the recurrence that gives the running time of mergesort is T(1) = 
Q(1), T(n) = 2T(n/2) + Q(n) for n > 1.  This recurrence is especially easy to understand, since the 
total size of the recursive subproblems is the same at each level of the recurrence.  In other 
situations this is not the case.  We explored a situation (see the section on in-place mergesort 
below) in which the recurrence governing the running time is T(1) = Q(1), T(n) = 3T(n/2) + Q(n) 
for n > 1.  If we ignore the constant factors, the recurrence becomes T(1) = 1, T(n) = 3T(n/2) + n 
for n > 1.  In this case the sum of the subproblem sizes does not remain constant but grows by a 
factor of 3/2 with each level of recursion. 
 
To solve this recurrence let us assume for simplicity that n is a power of 2.  (The solution we 
shall get holds for arbitrary n, but the proof is messier.)  Then the number of levels of recursion 
is lgn, where lg denotes the base-2 logarithm.  Since the total size of the subproblems grows by a 
factor of 3/2 with each level of recursion, the total size of the subproblems at level k of the 
recurrence is n(3/2)k.  Ignoring the constant factor, the total time is the sum of this value over all 
levels of the recursion.  This sum is at most a constant factor times the last term (why?) which is 
n(3/2)lgn = nlg3, which is about n1.5846.  Instead of getting a linearithmic result, we get a result that 
grows as a power of n greater then 1 (but less than 2). 
 
On the other hand, the recurrence T(1) = 1, T(n) = T(n/2) + n for n > 1 has a linear solution, as 
we can see by expanding: T(n) = n + n/2 + n/4 +… < 2n.  This recurrence arises for example in 
analyzing the best-case running time of the QuickSelect algorithm for finding the median of a set 
of n numbers, or more generally finding the kth smallest out of a set of n numbers.           
 



2-sums, 3-sums, k-sums 
 
We also explored the k-sum problem.  In the k-sum problem, one is given a set of n numbers and 
a fixed value k, and asked to determine whether there are k of the numbers that sum to zero.  
More generally one can ask for all sets of k of the numbers that sum to zero.  Important special 
cases are k = 2 and k = 3.  To simplify the discussion, I’ll assume we are just interested in 
determining whether any subset of size k sums to zero, but the methods I’ll discuss extend to 
solving the more general problem of finding all subsets of size k that sum to zero.  In stating time 
bounds I’ll assume that k is a fixed constant. 
 
The obvious way to solve the problem is to generate all k-size subsets and test each one.  This 
takes time proportional to the number of subsets, which is Q(nk).  In lecture, Kevin described 
how to use sorting and binary search to improve the worst-case running time for 3-sum: (1) Sort 
the numbers. (2) For each distinct pair of numbers x and y, use binary search in the sorted array 
to search for – (x + y).  This algorithm takes Q(nlogn) for the sorting plus Q(logn) time to test 
each of the Q(n2) pairs, for a total of Q(n2logn) time. 
 
We can reduce this bound by a factor of logn by observing that the searches for the various pairs 
are related, and we can do better by doing Q(n) searches at the same time, using linear instead of 
binary search.  Normally, linear search would be much more time-consuming than binary search, 
but because we can exploit the dependence among the searches if we use linear search, we gat an 
overall logarithmic speedup. 
 
The idea works even in the simplest version of the problem, 2-sum.  After sorting the numbers, 
we initialize x to be the smallest number and y to be the largest.  If x + y = 0, we stop.  If x + y < 
0, we replace x be the next bigger number of the list, and repeat.  If x + y > 0, we replace y by the 
next smaller number of the list, and repeat.  We stop when we find a solution or when x = y 
(assuming for simplicity that all numbers are distinct). 
 
Exercise: Prove that this algorithm is correct.  Hint: suppose x*, y* is a solution.  Prove that the 
algorithm will find a solution when x £ x*. 
 
The total number of times x or y changes is less than n, so the search time is Q(n).  The sorting 
time is Q(nlogn), so the sorting time dominates the search time, but we still get an improvement 
over the naïve Q(n2)-time algorithm.  For 3-sum, we only need to do the sorting once.  Then, for 
each possible value of x, we run the 2-sum linear search to look for a pair y and z such that x + y 
+ z = 0.  (In the 2-sum search, our target for y + z is – x, not zero.). If we want all solutions rather 
than a single one, we need to constrain the searching so that x < y < z: for each new value of x, 
initialize y to be the number after x. 
 
This idea reduces the time for the k-sum problem to Q(nk – 1) if k ³ 3.  We can reduce the time 
even further if k ³ 4, although at the cost of lots of additional storage space.  Suppose k is at least 
four and even.  Compute all possible sums of k/2 of the numbers.  Sort these sums.   Now run the 
2-sum algorithm on this huge sorted list.  In the linear search, x is the sum of the smallest k/2 
candidate numbers and y is the sum of the largest k/2 of the candidate numbers.  One needs to 
add a way to eliminate spurious solutions, in which x and y represent non-disjoint sets of 



numbers.  The worst-case running time of this method is Q(nk/2), but the worst-case space is also 
Q(nk/2), making it of questionable practical usefulness.  
 
Exercise: Give an efficient way to eliminate spurious solutions. 
 
Open-ended questions: What happens if k is odd?  Is there an even faster method? 
 
The idea of computing sums of half-size subsets was used by Horowitz and Sahni in an 
algorithm for the general subset sum problem: is there any subset, of any size k, that sums to 
zero?  There is quite a bit of literature on this problem, and I encourage you to explore it if you 
are interested. 
 
In-place MergeSort? 
 
We explored a way of making MergeSort into an in-place algorithm (one that uses only a 
constant number of extra storage locations other than the input array).  Suppose we had a partial 
merge algorithm that, given an array of size n split into a front half H1 and a back half H2, each 
sorted, rearranges the array into a front half A, completely sorted, and a back half B, in unknown 
order but such that every item in A is no greater than every item in B.  Suppose further that the 
partial merge algorithm takes linear time and is in-place.   Then we could implement MergeSort 
in-place as follows: Given the input array, apply MergeSort recursively to the front half of the 
array and to the back half of the array.  Then do a partial merge.  Finally, apply MergeSort 
recursively to the back half of the array.  This sorts the array.  (Why?). The recurrence governing 
the worst-case running time of this algorithm is T(1) = Q(1), T(n) = 3T(n/2) + Q(n) for n > 1, 
which we saw in the first part of these notes has a solution of Q(n1.58+). 
 
Thus if we had a linear-time, in-place partial merge algorithm, we could implement MergeSort in 
place with a sub-quadratic running time.  Of course, we need to design a partial merge algorithm.  
There is such an algorithm, but it is not so simple, I think, so I’ll leave the design of such an 
algorithm to you as a challenge problem.  If you want to accept this challenge, I suggest you 
begin by designing a partial merge algorithm that will result in the first quarter of the array 
containing the smallest quarter of the items in sorted order.  If you can do this, you should be 
able to bootstrap this algorithm so that for any fixed fraction f < 1, it will put the smallest fn 
items in the front of the array in sorted order and run in linear time, but with a constant factor in 
the running time that depends (badly) on n.  Such a result implies that for any e > 0, MergeSort 
can be implemented to run in place with a running time of Q(n1+e). 
 
Unfortunately, this does not attain the ultimate goal, which is to get an in-place version of 
MergeSort that runs in Q(nlogn) time.  This goal was achieved by Kronrod using much more 
complicated ideas.  Here is a link to a more recent paper that simplifies Kronrod’s algorithm: 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1155&rep=rep1&type=pdf.                  
 
     
 
   


