
COS 226                                           Precept 6 Notes 2                                    September 10, 2021 
Fall 2021 
Tarjan 
 
1 Percolation reprise 
 
As a follow-up to the question of whether there is a simple formula for the percolation threshold, 
Kevin pointed out to be that for bond percolation in a square grid it is known that the threshold is 
½, but this is not so easy to prove.  In  fact, we can use a symmetry argument of the kind we 
explored on September 3 to prove that the threshold is at least ½; the hard part is proving that the 
threshold is exactly ½. 
 
Let me say a bit more about this.  In bond percolation, all the sites (squares) are open, but the 
sides of the squares (the bonds) are not.  Each bond is open with independently with probability 
p.  We are interested in the value of p, call it p* (called pt in the previous set of notes) such that 
the system percolates with probability at least ½.  Percolate means that there is a path from 
above the grid across an open bond into the grid, then across open bonds through the grid, and 
finishing by crossing an open bond at the bottom of the grid.  As shown in the attached figure, 
there is a duality as in the hexagonal grid case, not for a square grid, but for an n-row, n+1-
column grid: the grid percolates top-to-bottom if and only if the dual grid, which has n+1 rows 
and n columns, does not percolate left-to-right.  The “only if” part uses the Jordan curve theorem 
as we have already seen; the “if” part uses a proof like that for the hexagonal grid in the notes on 
the game of Hex. 
 
Incidentally, the square grid and its dual as shown in the figure are the basis of another game I 
used to play as a child, called “Bridg-It”: the blue and red players alternate choosing unclaimed 
bonds, with the red player opening them and the blue player closing them.  The goal of the blue 
player is to form a blue top-to-bottom path; that of the red player, to form a red left-to-right path.  
Unfortunately, not only is this game a win for the first player by a “strategy stealing” proof like 
that for Hex, but there is a simple winning strategy for the first player.  (Can you find it?)  Thus 
Hex is much more interesting to play     
 
We conclude by symmetry that the bond top-to-bottom percolation threshold for an n by n+1 
grid is exactly ½.  It follows that for any fixed-size square grid, the bond percolation threshold is 
greater than 1/2, since the extra row makes percolation less likely.  The hard part is to prove that 
the extra row has less and less effect as n increases.  That is, for any p > ½, there is a large 
enough n such that the percolation threshold of an n by n grid is at most p. This is not surprising, 
and it is true, but its proof is as they say “beyond the scope of this class.” 
 
2 Counting iterations of nested loops      
 
Turning to topics we covered on September 10 and in the lectures on the 7th and 9th, let me begin 
with a few comments about counting iterations of nested loops.  A common form of such loops 
(which you saw in lecture) is a nested loop that iterates over pairs i, j, both of which are at least 
0, at most n – 1, and such that i < j.  A more complicated example is a triple nested loop that 



iterates over triples i, j, k, all at least 0, at most n – 1, and such that i < j < k.  How many such 
pairs or triples are there?  That is, how many iterations of the inner loop are there? 
 
Counting such pairs or triples is a classical combinatorial problem that you will study in COS240 
or 340, but let’s quickly review the answer here.  Counting such objects has two parts.  Let’s 
start with counting pairs.  We know that i and j must be distinct.  How many ways are there of 
choosing i and then choosing a distinct j?  There are n ways to choose i.  For each choice of i, 
there are exactly n – 1 ways to choose j, since one choice, that of j = i, is excluded.  The total 
number of choices of i and j is thus n(n – 1).  But not all of these choices satisfy i < j.  Indeed, for 
any particular pair of distinct integers in the desired range, say 5 and 7, there are two ways to 
obtain it:   we can choose i = 7 and j = 5, or i = 5 and j = 7.   In this case only the second choice 
satisfies the requirement that i < j.  This is true in general: for each pair of distinct integers, there 
are two ways to obtain it, exactly one of which satisfies the additional requirement that i < j.  We 
conclude that we must divide our original estimate by 2 to obtain the correct count: n(n – 1)/2.  
In combinatorics-ese, this is “n choose 2,” the number of ways to choose 2 distinct items out of 
n.  In tilde notation it is ~n2/2. 
 
The principle is the same to count ordered triples of distinct integers in a given range: there are n 
ways to choose i; for each of these, there are n – 1 ways to choose j distinct from i; for each 
choice of i and j, there are n – 2 ways to choose k distinct from both i and j.  But in doing the 
choosing this way, we obtain each possible triple of distinct integers some number of times, in 
only one of which are the integers in increasing order.  How many times?  Given a triple of 
distinct integers, there are 3 ways to choose which is first.  Having made this choice, there are 
only 2 ways to choose which is second.  The unchosen integer must be third.  This gives us 3 
times 2 = 6 possibilities, only one of which has the integers in increasing order.  We conclude 
that the number of distinct triples in increasing order is n(n – 1)(n – 2)/6.  In tilde notation it is 
~n3/6.  Using the combinatorialists’ notation 1(2)3(4)5…n = n! (n factorial), the formula for the 
number of k-length strictly increasing sequences of integers between 0 and n – 1 (inclusive) is 
n!/k!.  This is a useful formula to remember.  
 
In one of the problems on the precept lesson we saw another interesting example that takes a bit 
more work to analyze.  In that example the outer loop variable i starts at 1, increases by 1, and 
ends at n.  The inner loop variable j starts at 1, increases by j, and ends when j is at least n.  (I 
may be off by 1 here, but this won’t affect what I have to say.). How many iterations are there of 
the inner loop? 
 
If we understand what is going on, it is easy to at least write down a sum that estimates the 
number of iterations: we determine the number of iterations of the inner loop during the ith 
iteration of the outer loop, and sum over i.  The number of iterations of the inner loop when i = 1 
is n.  The number of iterations of the inner loop when i = 2 is n/2, since j increases by 2 each 
time.  This estimate may be off by 1, but this won’t matter if we only want a tilde estimate, as we 
shall see.  The number of iterations of the inner loop when i = 3 is n/3 (to within 1).  And so on.  
The number of iterations of the inner loop when i = n (the last iteration of the outer loop) is 1.  
Summing over I, we find that the total number of iterations is n + n/2 +n/3 +…+ n/n. 
 



Factoring out n, this sum is n(1 + 1/2 + 1/3  + 1/4 +…+1/n).  The inner sum is what is called Hn, 
the nth “Harmonic number.”  The mathematicians among you (and those who remember the 
appropriate slide in lecture) will know that Hn is roughly ln n, the natural logarithm of n.   We 
conclude that the total number of iterations is ~n ln n.  Since ln n grows with n, our error of at 
most 1 per value of i, totaling at most n over all iterations of the outer loop, is a lower-order term 
and does not affect our estimate if we use tilde notation. 
 
What if we didn’t know that the sum of the reciprocals of the first n integers is roughly ln n?  
The standard way to prove this is to use integral calculus, as Kevin mentioned in lecture.  You 
don’t have to prove this, but you may find it useful to memorize the formula. 
 
3 Coupon collecting 
 
An important setting in which the Harmonic numbers occur is the coupon collector’s problem.  
Here is one version.  To sell cereal, a cereal company runs a contest.  In each box of cereal it puts 
a coupon.  There are n different kinds of coupons.  If you buy a box of cereal, it will contain one 
coupon of one of these kinds.  If you collect one coupon of every kind, you win the grand prize!  
Assuming that the cereal company puts the same number of each kind of coupon in its boxes, 
one per box, how many boxes of cereal can you expect to buy before collecting at least one of 
each kind of coupon? 
 
Let’s solve this problem.  Let’s call a coupon useful if you don’t have one of its type yet.  
Initially you have no coupons, so any coupon is useful, and you get a useful coupon in your first 
box of cereal.  Once you have a useful coupon, others of the same kind are no longer useful.  
Thus your chance of getting a useful coupon in your second box is (n – 1)/n.  The chance 
remains the same on the third and later boxes, until you get a coupon of a second kind.  Once this 
happens, the chance of getting a third useful coupon drops to (n – 2)/n.  More generally, if you 
have i useful coupons, the probability of getting a useful one (of a kind different from the ones 
you already have) in your next cereal box is (n – i)/n. 
 
If your chance of getting a useful coupon is p = (n – i)/n, how many boxes of cereal on the 
average will you have to buy to get a useful coupon?  The answer is 1/p = n/(n – i).  This is a 
standard result from elementary probability that we could easily derive, but I’ll leave it to you to 
derive it or look it up.  Given this result, the total number of boxes we expect to open before 
collecting all n kinds of coupons is 1 for the first one plus n/(n – 1) for the second one plus n/(n – 
2) for the third one plus…plus n/1 for the last one.  This is exactly the sum we had at the end of 
the last section: you can expect to open nHn ~ n ln n boxes before collecting all n kinds of 
coupons.  
 
Perhaps not so coincidentally, the coupon collector’s problem occurs in the percolation 
assignment.  You need to open sites one at a time in random order.  The obvious way to do it is 
to generate a random number between 1 and n (if there are n sites) and open site number n if it is 
not already open.  This method does extra work, because as sites are opened the chance of 
selecting a site that is already open decreases, so you need more tries to open a new site.  Indeed, 
if you had to open all the sites, you would be in exactly the coupon collector’s situation.  
Fortunately, you only have to open about .58 of the sites before percolation occurs, so on each 



try you have at least a .42 chance of selecting a closed site and opening it, which means that at 
most 1/.42 ~ 2.4 tries are needed on average to open a new site.  It only takes this many tries near 
the end of the process; at the beginning, when very few sites are open, the average number of 
tries will be close to 1.  (As an exercise, you might compute the total number of tires needed to 
open say 60% of the sites.)  The unsuccessful tries only cost a small constant factor in time.  On 
the other hand, if the assignment required you to open all the sites, the unsuccessful tries would 
cost you a logarithmic factor in time, too much to pay.  In this case it would be better to sample 
in a way that gives a new site on every try.  How would you do this?  One part of this week’s 
programming assignment provides the answer: use a randomized queue.  
 
3 Average case versus worst case versus randomized algorithms 
 
Simple algorithms, such as those consisting of nested loops with a number of iterations that 
depend only on some single parameter n, use time and space that depend only on n.  But many 
algorithms have more complicated inputs, and the running time and space usage depend not only 
on the size of the input (n) but also on the details of the input.  For example, soon we shall study 
sorting algorithms, which take a sequence of n numbers and rearrange the sequence into sorted 
order.  The running time of such an algorithm can depend dramatically on the original 
arrangement of the numbers.  For example, the QuickSort algorithm can sort n numbers in Q(n) 
time in the best case but takes Q(n2) time in the worst case.  Should we use the best case or the 
worst case, or something else, to measure the efficiency of QuickSort?  
 
For many algorithms we shall use the worst-case running time as a function of the input size as 
our measure of efficiency.  Worst-case bounds have the advantage that they provide a 
performance guarantee: no matter how bad the input, the running time will not exceed the worst-
case bound.  Obtaining a worst-case bound requires us to understand the worst case, but it does 
not require understanding how the algorithm behaves on every possible input. 
 
Instead of the worst case, one might ask, “What happens in the average case?”  To make 
“average case” meaningful, we must know something about the distribution of the possible input 
instances, or we must make an assumption about this distribution.  For certain kinds of problems, 
sorting in particular, it is reasonable to do this: we assume that the input sequence is a uniformly 
random permutation of the input numbers.  Under this assumption, QuickSort sorts n numbers in 
Q(nlogn) time, as we shall see, and this is a more reasonable estimate of the efficiency of 
QuickSort than the worst-case bound, since bad cases are rare.  (Note, though, that for certain 
versions of quicksort natural cases, such as an input sequence that is already sorted, are worst 
case.) 
 
An average-case analysis may be more accurate than a worst-case analysis, but it can be harder 
to obtain, since it requires estimating the efficiency of the algorithm on every possible input, 
multiplying this estimate by the probability of the input, and summing.  Furthermore such an 
analysis is only as accurate as our model of the input distribution.  For problems on graphs and 
strings, we may not be able to obtain an accurate model of the input.  Worst-case bounds provide 
much more robust efficiency estimates. 
 



There is another way to use average-case analysis in algorithm design: allow the algorithm itself 
to be randomized, to “flip coins” or “roll dice” if you will, and make decisions based on the 
outcomes.  By making the algorithm randomized, the algorithm designer can obtain the benefits 
of the average case without needing any assumptions about the input distribution.  As an 
example, if pivots in QuickSort are chosen uniformly at random, QuickSort runs in expected 
Q(nlogn) time on any input sequence.  Depending on the problem, the best randomized 
algorithm can be simpler, or faster, or both (or neither) than the best deterministic algorithm.                  
 
     




