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This edition of the notes contains miscellaneous topics related to sorting.  First, though, a remark 

about representing a deque or related data structure by a circularly linked list, as discussed in the 

previous set of notes: in iterating over such a list, one needs to be careful about the test to detect 

the end of the list, since the last item does not contain a null pointer but instead a pointer to the 

first item.  To check if an item is the last one, test whether the access pointer (the pointer that 

gives access to the whole structure) points to it. 

 

Here is an alternative solution to the problem Kevin posed in lecture, of randomly shuffling a 

linked list.  The method Kevin described is based on the idea of mergesort: split the list in half, 

randomly shuffle each half, and then merge the two halves.  At each step of the merge, if the 

remaining unmerged parts of the two lists, say A and B, have sizes j and k, respectively, choose 

as the next element of the merged list the first element on A with probability / ( );j j k+  

otherwise, choose the first element on B.  Continue in the way until the merge is complete.  A 

drawback of this method is the need to flip a biased coin (a coin that comes up heads with 

probability other than ½).  An alternative method that requires only unbiased coin flips is based 

on an idea of Candace Button: instead of imitating mergesort, we imitate quicksort, as follows: If 

the list contains only one item, there is nothing to do.  Otherwise, for each item on the initial list, 

flip an unbiased coin (which has probability ½ of coming up heads).  Move all the items with 

heads in front of all the items with tails.  Randomly shuffle the items with heads by applying the 

method recursively; randomly shuffle the items with tails by applying the method recursively.  

This method shuffles in O(NlgN) expected time.  Unlike the method based on mergesort, it can 

run forever (how?), but it runs for a long time with exceedingly small probability. 

 

In precept we observed that quicksort needs extra space for the recursion stack, and that this 

space can be linear in the number of items to be sorted.  Recursion stack overflow is thus a 

potential problem.  One can prove that the expected stack size is O(lgN)  (exercise: prove this), 

but by slightly modifying the quicksort algorithm we can guarantee that the stack size is O(lgN) 

in the worst case.  The idea is simple: after dividing the set of items into two smaller sets, the 

small items and the large items, sort the smaller set first; save the larger subproblem for later.  (In 

contrast, the standard version of quicksort solves the subproblem containing the small keys first, 

even if there are more small keys than large keys.) When solving the larger subproblem, do not 

make a recursive call; just repeat the splitting process.  (The second recursive call is what is 

called a “tail recursion”, which we replace by an iteration.)  With this method, each time the 

recursion stack grows, the subproblem size at least halves.  Thus space needed for the recursion 

stack is O(lgN).  Exercise: implement this method. 

 



Because it needs a recursion stack, it is questionable whether quicksort should be viewed as an 

in-place sorting method: a truly in-place sorting method would use only a constant number of 

extra storage locations in addition to the array occupied by the items to be sorted.  This is true for 

example of heapsort.  As I discussed in precept, the number of comparisons required by heapsort 

in the worst case can be reduced to ~ N lg N,  less than the number required by quicksort.  

Quicksort is generally favored over heapsort not because it does fewer comparisons but because 

it does less data movement, the data movement is more local (so the caching performance is 

better), and the algorithm is more parallelizable. 

 

Here are some optimizations of heap insertion, heap deletion, and heapsort.  To do an insertion, 

we insert the new item into the first empty position, say position k.  We then find its correct 

location, by doing a search on its proper ancestors, which are in positions / 2 j

j
k k =    for 

1, 2,3,...j =  There are at most lg N such proper ancestors.  (Why?)  We could do a binary search 

among these ancestors to locate the proper position of the new item, as I suggested in precept, 

but an even better idea is to do an exponential/binary search: we compare the new item to those 

in positions 1 2 4 8, , ,k k k k  until finding a bigger item; then we do binary search within the set of 

ancestors between the last two ancestors tested (one is smaller, the other is bigger).  This takes at 

most 2 lg lg N  comparisons in the worst case.  (Why?)  Furthermore, since most of the items are 

in the bottom levels of the tree, in some average sense the number of comparisons may well be 

O(1).  (Problem: prove this formally.)  In any case, having found the correct position of the next 

item, we sink by one level all its ancestors that are smaller and insert the new item in its correct 

position.  (If we do the sinking by pairwise exchanges, we do about three times as many writes as 

are needed.)  In conclusion, we can do an insertion in at most 2 lg lg N  comparisons in the worst 

case (reducible to lg lg N by doing standard binary search), lg N  writes in the worst case, and 

perhaps O(1) comparisons and writes on average. 

 

We can save a constant factor in deletions as well.  To delete the maximum, we remove the item 

in position 1 and save it for return.  This creates a hole, which we fill with the biggest of the two 

children of the hole.  This creates a hole one level down in the tree, which we fill in the same 

way.  We continue filling the hole until it reaches the bottom level of the tree.  If the hole is in 

the last previously full position, we are done.  If not, we move the item in the last full position 

into the hole, and move it to its correct position by comparing it against its new ancestors as 

described above.  As a further optimization, we can avoid moving any items until we do all the 

comparisons and know exactly which position in the bottom level becomes the hole and where to 

put the item in the last full position.  We can then move only the items that need to be moved, of 

which there are at most lgN.  The worst-case number of comparisons is ~lgN, reduced from 

~2lgN. 

 



A third observation about heaps concerns heapsort.  Heapsort consists of two passes: heap 

construction, in which the original array is turned into a heap, and sorting, in which the items are 

deleted from the heap in decreasing order and inserted at the end, resulting eventually in the 

entire array being in increasing order.  The sorting pass consists of N deletions, which by the 

optimized method described above take a total of ~NlgN comparisons and ~NlgN writes, worst-

case.  The first pass is done bottom-up rather than top down: it consists of sinking each item to 

its correct level, doing a sink on positions N, N – 1, N – 2,…, 1.  Each of these sinks can be 

optimized in the same way as above.  Whether or not this optimization is done, the entire first 

pass takes O(N) time.  We can see this as follows.  Consider the last sink, that of the item in 

position 1.  This sink takes O(lg N) time.  Before this sink, the rest of the array consists of two 

interlaced heaps, one consisting of the even positions starting from 2, the other consisting of the 

odd positions starting from 3.  Each of these heaps contains at most half the items.  The total 

time for the first pass, T(N), satisfies the recurrence T(N) 2T (N / 2) O(lg N)≤ +   (why?), which 

solves to T(N) = O(N). (Why?)  Thus most of the time in heapsort is spent in the sorting pass. 

 

In precept I was asked whether the A* search technique used in the 8-puzzle programming 

assignment is guaranteed to find a shortest path.  The answer is yes, provided that the estimate of 

the distance from the current state to the goal state (in the assignment this is the number of out-

of-place blocks or the sum of Manhattan distances of displacements) satisfies a certain condition.  

A necessary but not sufficient condition is that the estimate be a lower bound on the actual 

distance.  The proper framework in which to discuss this issue is that of shortest path 

computation and in particular Dijkstra’s algorithm, which we shall study later in the semester.  

See lecture 15.  I plan to address A* in the precept notes after that lecture. 


