
Lecture P9: WAR Card Game

3

Overview

Write a program to play the card game "War."

Goals.

■ Practice with linked lists and pointers.

■ Appreciate the central role played by data structures.

■ Learn how to design a "large" program.

■ Learn how to read a "large" program.

4

WAR Demo

Rules of the game.

■ Each player is dealt half of the cards.

■ Each player plays top card.
– whichever is higher captures both cards
– in event of tie, WAR

■ Repeat until one player has all the cards.

WAR demo.

5

Before You Write Any Code

Determine a high-level view of the code you plan to write.

Break it up into manageable pieces.

■ Create the deck of cards.

■ Shuffle the cards.

■ Deal the cards.

■ Play the game.

Determine how you will represent the data.

■ The cards.

■ The deck.

■ The hands.

6

Representing The Cards

Represent 52 cards using an integer between 0 and 51.

K ♣ 11

A ♣ 12

.

3 ♣ 1

4 ♣ 2

2 ♣ 0

Card #

Clubs

K ♦ 24

A ♦ 25

.

3 ♦ 14

4 ♦ 15

2 ♦ 13

Card #

Diamonds

K ♥ 37

A ♥ 38

.

3 ♥ 27

4 ♥ 28

2 ♥ 26

Card #

Hearts

K ♠ 50

A ♠ 51

.

3 ♠ 40

4 ♠ 41

2 ♠ 39

Card #

Spades

7

Representing The Cards

Represent 52 cards using an integer between 0 and 51.
■ War if (rank(c1) == rank(c2))

typedef int Card;

int rank(Card c) {
return c % 13;

}

int suit(Card c) {
return (c % 52) / 13;

}

Card type

c % 52 to allow for
multiple deck war

46 = 3 * 13 + 9 12

8

Representing The Cards

void showcard(Card c) {
switch (rank(c)) {

case 0: printf("Deuce of "); break;
case 1: printf("Three of "); break;

. . .

case 12: printf("Ace of "); break;
}

switch (suit(c)) {
case 0: printf("Clubs\n"); break;
case 1: printf("Diamonds\n"); break;
case 2: printf("Hearts\n"); break;
case 3: printf("Spades\n"); break;

}
}

Card type

9

Testing the Code

% gcc war.c
% a.out

Deuce of Clubs
Three of Clubs
Four of Clubs
Five of Clubs
Six of Clubs
Seven of Clubs

. . .

King of Spades
Ace of Spades

Unix

#include <stdio.h>
#define DECKSIZE 52

typedef int Card;

int rank(Card c) {...}
int suit(Card c) {...}
void showCard(Card c) {...}

int main(void) {
Card c;
for (c = 0; c < DECKSIZE; c++)

showCard(c);
return 0;

}

war.c (test code)

10

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

Atop Abot

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

typedef struct node* link;
struct node {

Card card;
link next;

};

link Atop, Abot;
link Btop, Bbot;

represent a pile of cards

standard linked
list structure

maintain pointer to first
and last card in A’s pile

11

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

Why use linked lists?

■ Draw cards from the top, captured cards go to bottom.
– need direct access to top and bottom cards
– no need for direct access to middle cards

■ Gain practice with linked lists.

Atop Abot

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

12

Showing a Hand

Use printf() method for debugging.

■ May need to build supplemental functions to print out contents of
data structures.

■ Print out contents of player’s hand.

void showPile(link pile) {
link x;
for (x = pile; x != NULL; x = x->next)

showCard(x->card);
}

showPile()

standard linked
list traversal

13

Showing a Hand

Use printf() method for debugging.

■ May need to build supplemental functions to print out contents of
data structures.

■ Print out contents of player’s hand.

■ Count number of cards in player’s hand.

int countPile(link pile) {
link x;
int cnt = 0;
for (x = pile; x != NULL; x = x->next)

cnt++;
return cnt;

}

countPile()

standard linked
list traversal

14

Creating the Deck

Goal: create a 52 card deck.

■ Need to dynamically allocate memory.

■ Good programming practice to write helper function to allocate
memory and initialize it.

#include <stdlib.h>

link NEWnode(Card card, link next) {
link x;
x = malloc(sizeof *x);
if (x == NULL) {

printf("Out of memory.\n");
exit(EXIT_FAILURE);

}
x->next = next;
x->card = card;
return x;

}

NEWnode()

allocate memory

initialize node

needed for
malloc()

malloc() failed

15

Creating the Deck

Goal: create a 52 card deck.

■ Need to dynamically allocate memory.

link makePile(int N) {
link x = NULL;
Card c;

for (c = N - 1; c >= 0; c--)
x = NEWnode(c, x);

return x;
}

makePile()

add next card to
top of pile

x is link to top of
pile

16

Testing the Code

% gcc war.c
% a.out

Deuce of Clubs
Three of Clubs
Four of Clubs
Five of Clubs
Six of Clubs
Seven of Clubs

. . .

King of Spades
Ace of Spades

Unix

#include <stdio.h>
#include <stdlib.h>
#define DECKSIZE 52

typedef int Card;
[rank(), suit(), showCard()]

typedef struct node* link ...
link NEWnode(Card card, link next) {...}
link makePile(int N) {...}
link showPile(link pile) {...}

int main(void) {
link deck;
deck = makePile(DECKSIZE);
showPile(deck);
return 0;

}

war.c

17

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

d

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.
– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

18

Dealing Code

void deal(link d) {
Atop = d; Abot = d; d = d->next;
Btop = d; Bbot = d; d = d->next;
while (d != NULL) {

Abot->next = d; Abot = d; d = d->next;
Bbot->next = d; Bbot = d; d = d->next;

}
Abot->next = NULL; Bbot->next = NULL;

}

deal()

handle first card
of each pile

assumes deck
has even # cards

mark end of piles

19

Testing the Code

% gcc war.c
% a.out

PLAYER A
Deuce of Clubs
Four of Clubs
Six of Clubs
. . .
King of Spades

PLAYER B
Three of Clubs
Five of Clubs
Seven of Clubs
. . .
Ace of Spades

Unix

. . . as before

link Atop, Abot, Btop, Bbot;

void deal(link d) { ...}

int main(void) {
link deck;
deck = makePile(DECKSIZE);
deal(deck);
printf("PLAYER A\n");
showPile(Atop);
printf("\nPLAYER B\n");
showpile(Btop);
return 0;

}

war.c

20

Shuffling the Deck

Shuffle the deck.

■ Disassemble linked list elements and put into an array.

■ Shuffle array elements (using algorithm from Lecture P3).

■ Reassemble linked list from shuffled array.

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ NULL

4♣ 5♣ 6♣ 7♣2♣ 3♣Value 8♣ 9♣
2 3 4 50 1Array index 6 7

9♣ 2♣ 8♣ 7♣4♣ 6♣Value 5♣ 3♣
2 3 4 50 1Array index 6 7

4♣ 6♣ 9♣ 2♣ 8♣ 7♣ 5♣ 3♣ NULL

21

Shuffling the Deck

link shufflePile(link pile) {
int i, n;
link x;
link a[DECKSIZE];

for (x = pile, n = 0; x != NULL; x = x->next, n++)
a[n] = x;

shuffle(a, n);

for (i = 0; i < n - 1; i++)
a[i]->next = a[i+1];

a[n-1]->next = NULL;

return a[0];
}

shuffle pile of cards

reassemble linked list

shuffle array elements

22

Testing the Code

% gcc war.c
% a.out

PLAYER A
Eight of Diamonds
Ten of Hearts
Four of Clubs
. . .
Nine of Spades

PLAYER B
Jack of Hearts
Jack of Clubs
Four of Diamonds
. . .
Ten of Clubs

Unix

. . . as before

int randomInteger(int n) { }
void shufflePile(link pile) { ...}

int main(void) {
link deck;
deck = makePile(DECKSIZE);
deck = shufflePile(deck);
deal(deck);
printf("PLAYER A\n");
showpile(Atop);
printf("\nPLAYER B\n");
showpile(Btop);

return 0;
}

war.c

24

Peace Code

void play (void) {
int Aval, Bval;
link Ttop, Tbot;
while ((Atop != NULL) && (Btop != NULL)) {
Aval = rank(Atop->card);
Bval = rank(Btop->card);
Ttop = Atop; Tbot = Btop;
Atop = Atop->next; Btop = Btop->next;
Ttop->next = Tbot; Tbot->next = NULL;

if (Aval > Bval) {
if (Atop == NULL) Atop = Ttop;
else Abot->next = Ttop;
Abot = Tbot;

}

else {
if (Btop == NULL) Btop = Ttop;
else Bbot->next = Ttop;
Bbot = Tbot;

}
}

}

war.c

Until a player
loses

A wins

B wins

25

Game Never Ends

"Peace" (war with no wars).

■ Starting point for implementation.

■ Assume player B wins if a tie.

What should happen?
! Intuitively, B has an advantage, so should usually win.

What actually happens?
! Game "never" ends for many (almost all) deals. Why?

5 ♣ 3 ♣

2♣ 4 ♣ NULL

NULL

30

One Bit of Uncertainty

What actually happens?

■ Game "never" ends for many (almost all) deals.

Proper use of randomization is vital in simulation applications.

■ Randomly exchange two cards in battle when picked up.

if (randomInteger(2) == 1) {
Ttop = Atop;
Tbot = Btop;

}
else {

Ttop = Btop;
Tbot = Atop;

}

exchange cards randomly

B wins in 446 steps.
A wins in 404 steps.
B wins in 330 steps.
B wins in 1088 steps.
B wins in 566 steps.
B wins in 430 steps.
A wins in 208 steps.
B wins in 214 steps.
B wins in 630 steps.
B wins in 170 steps.

Ten Typical Games

31

while (Aval == Bval) {
for (i = 0; i < WARSIZE; i++) {

if (Atop == NULL)
return;

Tbot->next = Atop; Tbot = Atop;
Atop = Atop->next;

}
Aval = rank(Tbot->card);

for (i = 0; i < WARSIZE; i++) {
if (Btop == NULL)

return;
Tbot->next = Btop; Tbot = Btop;
Btop = Btop->next;

}
Bval = rank(Tbot->card);

}
Tbot->next = NULL;

Add Code for War
Add code to handle ties.

■ Insert in play() before if (Aval > Bval)

while not if to
handle multiple wars

A’s war card

B’s war card

add WARSIZE cards
to temporary pile

32

B wins in 60 steps.
A wins in 101 steps.
B wins in 268 steps.
A wins in 218 steps.
B wins in 253 steps.
A wins in 202 steps.
B wins in 229 steps.
A wins in 78 steps.
B wins in 84 steps.
A wins in 654 steps.

Ten Typical Games

Answer

Q. "So how long does it take?"
A. "About 10 times through deck (254 battles)."

Q. "How do you know?"
A. "I played a million games. . . ."

33

Average # of Steps in War

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9

War Size

S
te

p
s

Answer

Q. "That sounds like fun."
A. "Let’s try having bigger battles. . . ."

34

Problems With Simulation

Doesn’t precisely mirror game.

■ Deal allocates piles in reversed order.

■ People pick up cards differently.

■ "Sort-of" shuffle prize pile after war?

■ Separate hand and pile.
– could have war as pile runs out

■ Our shuffling produces perfectly random deck.
(modulo "randomness" of rand())

Tradeoffs.

■ Convenience for implementation.

■ Fidelity to real game.

■ Such tradeoffs are typical in simulation.

■ Try to identify which details matter.

35

War Using Queue ADT

Use first class queue ADT. Why queue?
! Always draw cards from top, return captured cards to

bottom.

Queue A, B;

void deal(Queue Deck) {
A = QUEUEinit();
B = QUEUEinit();

while (!QUEUEisempty(Deck)) {
QUEUEput(A, QUEUEget(Deck));
QUEUEput(B, QUEUEget(Deck));

}
}

deal()

36

War Using Queue ADT

Use first class queue ADT. Why queue?
! Always draw cards from top, return captured cards to

bottom.

void play(Queue A, Queue B) {
Card Acard, Bcard;
Queue T = QUEUEinit();

while (!QUEUEisempty(A) && !QUEUEisempty(B)) {
Acard = QUEUEget(A); Bcard = QUEUEget(B);
QUEUEput(T, Acard); QUEUEput(T, Bcard);
if (rank(Acard) > rank(Bcard))

while (!QUEUEisempty(T))
QUEUEput(A, QUEUEget(T));

else
while (!QUEUEempty(T))

QUEUEput(B, QUEUEget(T));
}

}

peace.c

37

War Using Queue ADT

Use first class queue ADT. Why queue?
! Always draw cards from top, return captured cards to

bottom.

Advantages:
! Simplifies code.
! Avoids details of linked lists.

Disadvantage:
! Adds detail of interface.

38

Summary

How to build a "large" program?

■ Use top-down design.

■ Break into small, manageable pieces. Makes code:
– easier to understand
– easier to debug
– easier to change later on

■ Debug each piece as you write it.

■ Good algorithmic design starts with judicious choice of data
structures.

How to work with linked lists?

■ Draw pictures to read and write pointer code.

