Lecture P9: WAR Card Game

Overview

Write a program to play the card game "War."

Goals.
. Practice with linked lists and pointers.
. Appreciate the central role played by data structures.
. Learn how to design a "large" program.
. Learn how to read a "large" program.

WAR Demo

Rules of the game.
. Each player is dealt half of the cards.
. Each player plays top card.
- whichever is higher captures both cards
—in event of tie, WAR
. Repeat until one player has all the cards.

WAR demo. E

Before You Write Any Code

Determine a high-level view of the code you plan to write.

Break it up into manageable pieces.
. Create the deck of cards.

. Shuffle the cards.

. Deal the cards.

. Play the game.

Determine how you will represent the data.
. The cards.

. The deck.

. The hands.

Representing The Cards

Represent 52 cards using an integer between 0 and 51.

Clubs Diamonds Hearts Spades
Card # Card # Card # Card #
2% 2¢ 13 2v | 26 24 | 39

0
3& 1 3¢ 14 3v 27 34 40
44 2 44 15 49 28 4.4 41
K& [11 Ke 24 Ke | 37 K& 50
As | 12 Ae 25 Av | 38 Ae 51

Representing The Cards

Represent 52 cards using an integer between 0 and 51.

. Warif (rank(cl) == rank(c2))

& 0

}

5 T

ftu typedef int Card;
int rank(Card c) {

L return ¢ % 13;
ﬁ }

int suit(Card c) {
return (¢ %52) / 13;

==

LREICE

=t o

46=3*13+9 | |

¢ % 52 to allow for
multiple deck war

Card type

voi d showcard(Card c) {
switch (rank(c)) {

}

Representing The Cards

case O0: printf("Deuce of "); break;
case 1: printf("Three of "); break;

case 12: printf("Ace of "); br eak;

switch (suit(c)) {

case 0: printf("C ubs\n"); br eak;
case 1: printf ("D anpbnds\n"); break;
case 2: printf("Hearts\n"); br eak;
case 3: printf("Spades\n"); br eak;

Testing the Code

war.c (test code)

#i ncl ude <stdi o. h>
#def i ne DECKSI ZE 52

typedef int Card;

int rank(Card c) {...}
int suit(Cardc) {...}
voi d showCard(Card c) {...}

int main(void) {
Card c;
for (c = 0; ¢ < DECKSIZE; c++)
showCar d(c);
return O;

}

% gcc war. c
% a. out

Deuce of O ubs
Three of C ubs

Four of O ubs
Fi ve of C ubs
Si x of C ubs

Seven of d ubs

Ki ng of Spades
Ace of Spades

12

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

represent a pile of cards

Is:tandardlinked ’\::> typedef struct node* Iink;
ist structure struct node {

Card card;
l'i nk next;

I

maintain pointer to first .
PP > 1ink Atop, Abot;
and last card in A’s pile . ’ '
P link Btop, Bbot;

At op Abot

- Wery ey Wy -y

Representing the Deck and Hands

Use a linked list to represent the deck and hands.

Why use linked lists?
. Draw cards from the top, captured cards go to bottom.
- need direct access to top and bottom cards
- no need for direct access to middle cards
. Gain practice with linked lists.

At op Abot

- Wery ey Wy -y

Showing a Hand

Use printf () method for debugging.

. May need to build supplemental functions to print out contents of
data structures.

. Print out contents of player’s hand.

voi d showPile(link pile) {

l'ink x;
for (x = pile; x !'= NULL; x = x->next)

standard linked
list traversal

showCar d(x- >card) ;

Showing a Hand

Use printf () method for debugging.

. May need to build supplemental functions to print out contents of
data structures.

. Print out contents of player’'s hand.
. Count number of cards in player's hand.

countPile()

int countPile(link pile) {
l'ink x;

= 0;

3 || int cnt
standard linked :> for (x = pile; x !'= NULL; x = x->next)

list traversal []

cnt ++;
return cnt;

Creating the Deck

Goal: create a 52 card deck.
. Need to dynamically allocate memory.

. Good programming practice to write helper function to allocate
memory and initialize it.

NEWnNode()

needed for #incl ude <stdlib. h>
mal | oc()

i nk NEwhode(Card card, link next) {
link x;

| allocate memory —>> x = malloc(sizeof *x);

if (x == NULL) {
printf("Qut of nmenory.\n");
exit (EXI T_FAI LURE) ;

| malloc() failed

}
X->next = next;
.—-J.> x->card = card;

return x;
}

| initialize node

Creating the Deck

Goal: create a 52 card deck.
. Need to dynamically allocate memory.

makePile()

— I'ink makePile(int N {
x is link to top of b link x = NULL:

pile Card c;

for (c =N- 1; c >= 0; c--)
add next card to X = NEWhode(c, X);
top of pile

return x;

Testing the Code

% gcc war. c
% a. out

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

#def i ne DECKSI ZE 52
Deuce of C ubs
Three of C ubs
Four of C ubs
Five of O ubs
Si x of d ubs

Seven of d ubs

typedef int Card;
[rank(), suit(), showCard()]

typedef struct node* link ...

i nk NEWhode(Card card, link next) {...}
link makePile(int N) {...}

link showPile(link pile) {...}

Ki ng of Spades
Ace of Spades

int main(void) {
l'i nk deck;
deck = nmkePi | e(DECKSI ZE) ;
showPi | e(deck);
return O;

}

Dealing

Deal cards one at a time. E

. Input: deck of cards (linked list).

. Creates: two new linked lists for players A and B.
- global variable Atop, Btop point to first node
- global variable Abot, Bbot point to last node

. Does not create (malloc) new nodes.

el B B By B

Dealing Code

voi d deal (link d) {

handle first card Atop = d; Abot = d; d = d->next;

of each pile Btop = d; Bbot = d; d = d->next;
while (d !'= NULL) {

assumes deck Abot - >next = d; Abot =d; d

has even # cards Bbot - >next = d; Bbot =d; d

}

mark end of piles

Abot - >next = NULL; Bbot->next =

d- >next ;
d- >next ;

NULL;

Testing the Code

as before % gcc war. c
% a. out
link Atop, Abot, Btop, Bbot;
PLAYER A
void deal (link d) { ...} Deuce of d ubs
Four of C ubs
int main(void) { Six of O ubs
I'ink deck; S
deck = makePi | e(DECKSI ZE) ; King of Spades
deal (deck);

PLAYER B

Three of C ubs
Fi ve of C ubs
Seven of C ubs

printf("PLAYER A n");

showPi | e(At op) ;

printf("\nPLAYER B\n");

showpi | e(Bt op) ;

return O; B
} Ace of Spades

Shuffling the Deck

Shuffle the deck.
. Disassemble linked list elements and put into an array.

. Shuffle array elements (using algorithm from Lecture P3).

. Reassemble linked list from shuffled array.

3R IRE Ry WIRE IR IR IR AR RNy

Array index 0

Value 2% | 3% |48 | 5& | 6% | /% | 8% | 9&

Array index 0
Value 4% | 6% | O% | 2% | 8% | 7% | 58 | 38

(o [T 50 [+ [0 [7o [3-o[5 -+ e [

Shuffling the Deck

shuffle pile of cards

link shufflePile(link pile) {
int i, n;
link x;
I'i nk a[DECKSI ZE] ;

for (x = pile, n =0; x !'= NULL; X = x->next, n++)
a[n] = x;

shuffle(a, n); <# shuffle array elements

a[i]->next = a[i+1];

a[n- 1] - >next = NULL;

for (i =0; i <n- 1; i+4)
<::: reassemble linked list

return a[0];

Testing the Code Peace Code
voi d play (void) {

int Aval, Bval;
as before % gcc war. c i link Ttop, Tbot;
% a. out Until aplayer L_N while ((Atop != NULL) && (Btop != NULL)) {
int random nteger(int n) { } loses } Ava: = rantEAtop->Carg;;
i i F : PLAYER A Bval = rank(Btop->card);
void shufflePile(link pile) { ...} Ei ght of Dianonds Tews = g Thm o Eia:
. . . Atop = Atop->next; Btop = Btop->next;
int main(void) { Izen of Hearts Ttop->next = Tbot; Tbot->next = NULL;
l'ink deck: our of C ubs 1 '
deck = makePi | e(DECKSI ZE) ; L —'A e " gAvi)I: o ?\—/alr\l)UL}_ Atop = Ttop;
deck = shufflePile(deck); Nine of Spades A e B S
e (Gek) ’ el se Abot->next = Ttop;
ea ecKk); Abot = Thot;
printf("PLAYER A\ n"): S’LA:ERf BHe t }
showpi | e(At op) ; Jack Of a a[) s B wins ::> el se {
printf("\nPLAYER B\n"): ack of O ubs T if (Btop == NULL) Btop = Ttop;
showpi | e(Bt op) ; Four of Di anonds el se Bbot->next = Ttop;
e Bbot = Tbot;
return O; Ten of O ubs)
i)
Game Never Ends One Bit of Uncertainty
"Peace" (war with no wars). What actually happens?
. Starting point for implementation. . Game "never" ends for many (almost all) deals.

. Assume player B wins if a tie. o . o
Proper use of randomization is vital in simulation applications.

What should happen? Randomly exchange two cards in battle when picked up.

e
What actually happens? (if (random nteger (2) == 1) {\ Bwns in 446 steps.
rd Ttop = Atop; Awins in 404 steps.
Tbot = Btop; Bwinsin 330 steps.
} B wins in 1088 steps.
‘54\._‘_434-\._‘_,‘NULL‘ el se { Bwins in 566 steps.
Ttop = Btop; Bwnsin 430 steps.
Tbot = At op; Awins in 208 steps.
‘2-1- ‘._‘_444-‘._‘_,‘NULL‘ \} Y, Bwnsin 214 steps.
Bwns in 630 steps.
exchange cards randomy Bwinsin 170 steps.

Add Code for War

Add code to handle ties.
Insertin pl ay() before i f (Aval > Bval)

N while (Aval == Bval) {
handle multiple wars for (i = 0; i < WARSIZE; i++) {

if (Atop == NULL)
return;
Tbot - >next = Atop; Thot = Atop;
At op = Atop->next;
}

A’s war card > Aval =r ank(Tbot - >car d) 0

for (i =0; i < WARSIZE; i++) {

if (Btop == NULL)
add WARSI ZE cards return:
to temporary pile T Tbot - >next = Btop; Thot = Btop;

Bt op = Bt op->next;

}
B’s war card :::> Bval = rank(Tbot->card);

}
Thbot - >next = NULL;

Answer

Q. "So how long does it take?"
A. "About 10 times through deck (254 battles)."

Q. "How do you know?"
A. "l played a million games. . .."

Ten Typical Games

Bwins in 60 steps.
A wins in 101 steps.
B wins in 268 steps.
A wins in 218 steps.
B wins in 253 steps.
A wins in 202 steps.
B wins in 229 steps.
Awns in 78 steps.
Bwins in 84 steps.
A wins in 654 steps.

Answer

Q. "That sounds like fun."
A. "Let’s try having bigger battles. . . ."

Average # of Steps in War

800 -
600
400 +
200

Steps

o 1 2 3 4 5 6 7 8 9
War Size

Problems With Simulation

Doesn't precisely mirror game.
. Deal allocates piles in reversed order.
. People pick up cards differently.
. "Sort-of" shuffle prize pile after war?
. Separate hand and pile.
- could have war as pile runs out

. Our shuffling produces perfectly random deck.
(modulo "randomness" of rand())

Tradeoffs.
. Convenience for implementation.
. Fidelity to real game.
. Such tradeoffs are typical in simulation.
. Try to identify which details matter.

War Using Queue ADT

Use first class queue ADT. Why queue?
e

Queue A B;

voi d deal (Queue Deck) {
A = QUEUEI nit();
B = QUEUE nit();
whil e (! QUEUE senpty(Deck)) {

QUEUEput (A, QUEUEget (Deck)) ;
QUEUEput (B, QUEUEget (Deck));

War Using Queue ADT

Use first class queue ADT. Why queue?
e

peace.c

voi d play(Queue A, Queue B) {
Card Acard, Bcard;
Queue T = QUEUEI nit();

while (!QUEUE sempty(A) && ! QUEUEI senpty(B)) {
Acard = QUEUEget (A); Bcard = QUEUEget (B);
QUEUEput (T, Acard); QUEUEput (T, Bcard);
if (rank(Acard) > rank(Bcard))
whil e (! QUEUEI senpty(T))
QUEUEput (A, QUEUEget (T));
el se
while (! QUEUEenpty(T))
QUEUEput (B, QUEUEget (T));

War Using Queue ADT

Use first class queue ADT. Why queue?
rd

Advantages:
e
e

Disadvantage:
rd

Summary

How to build a "large" program?
. Use top-down design.
. Break into small, manageable pieces. Makes code:
- easier to understand
- easier to debug
- easier to change later on
. Debug each piece as you write it.
. Good algorithmic design starts with judicious choice of data
structures.

How to work with linked lists?
. Draw pictures to read and write pointer code.

