
Type Checking
Part 1: Formal Rules

Speaker: David Walker
COS 326

Princeton University

slides copyright 2020 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Implementing an Interpreter

let x = 3 in
x + x

Let (“x”,
Num 3,
Binop(Plus, Var “x”, Var “x”))

Num 6

6

Parsing

Evaluation

Pretty
Printing

2

Type Checking

Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * t * e
| Call of e * e
| Let of x * e * e

Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * t * e
| Call of e * e
| Let of x * e * e

Notice that we require
a type annotation here.

We'll see why this is required
for our type checking algorithm later.

Language (Abstract) Syntax (BNF Definition)

t ::= int | bool | t -> t

b -- ranges over booleans
n -- ranges over integers

x -- ranges over variable names
c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * t * e
| Call of e * e
| Let of x * e * e

Recall Inference Rule Notation
When defining how evaluation worked, we used this notation:

e1 -->* λx.e e2 -->* v2 e[v2/x] -->* v
e1 e2 -->* v

“if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v”

In English:

And we were also able to translate each rule into 1 case of
a function in OCaml. Together all the rules formed the basis
for an interpreter for the language.

The evaluation judgement
This notation:

was read in English as "e evaluates to v."

It described a relation between two things – an expression e and
a value v. (And e was related to v whenever e evaluated to v.)

Note also that we usually thought of e on the left as "given" and
the v on the right as computed from e (according to the rules).

e -->* v

The typing judgement
This notation:

is read in English as "e has type t in context G." It is going to
define how type checking works.

It describes a relation between three things – a type checking
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to
compute t. The typing rules are going to tell us how.

G Ͱ e : t

Typing Contexts

What is the type checking context G?

Technically, I'm going to treat G as if it were a (partial) function
that maps variable names to types. Notation:

G(x) -- look up x's type in G
G,x:t -- extend G so that x maps to t

When G is empty, I'm just going to omit it. So I'll sometimes just
write: Ͱ e : t

Example Typing Contexts
Here's an example context:

x:int, y:bool, z:int

Think of a context as a series of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool
and z has type int"

In the substitution model, if you assumed x has type int, that
means that when you run the code, you had better actually wind
up substituting an integer for x.

Typing Contexts and Free Variables
One more bit of intuition:

If an expression e contains free variables x, y, and z then we need
to supply a context G that contains types for at least x, y and z. If
we don't, we won't be able to type-check e.

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

Goal: Give rules that define
the relation "G Ͱ e : t".

To do that, we are going to give
one rule for every sort of expression.

(We can turn each rule into
a case of a recursive function that
implements it pretty directly.)

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ b : bool

“boolean constants b always have type bool,
no matter what the context G is"

English:

Rule for constant booleans:

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ n : int

“integer constants n always have type int,
no matter what the context G is"

English:

Rule for constant integers:

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

const(c) = t
G Ͱ c : t

“const c always has the type t
that the function const says it does,
no matter what the context G is"

English:

For any constant (where c is an int or a bool)
we might use the following rule if we have
a function around like "const" to tell us the
type of the constant.

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1 G Ͱ e2 : t2 optype(o) = (t1, t2, t3)
G Ͱ e1 o e2 : t3

“e1 o e2 has type t3, if e1 has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

where

Rule for operators:

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

English:

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ x : G(x)

“variable x has the type given by the context"

Rule for variables:

English:

Note: this is rule explains (part) of why the
context needs to provide types for all of
the free variables in an expression

look up x in
context G

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : bool G Ͱ e2 : t G Ͱ e3 : t
G Ͱ if e1 then e2 else e3 : t

“if e1 has type bool
and e2 has type t
and e3 has (the same) type t
then e1 then e2 else e3 has type t "

Rule for if:

English:

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G, x:t Ͱ e : t2
G Ͱ λx:t.e : t -> t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for functions:

English:

Notice that to know
how to extend the
context G, we need
the typing annotation
on the function argument

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1 -> t2 G Ͱ e2 : t1
G Ͱ e1 e2 : t2

“if G proves e1 has type t1 -> t2 and e2 has type t1
then e1 e2 has type t2 "

Rule for function call:

English:

Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | <

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G Ͱ e1 : t1 G,x:t1 Ͱ e2 : t2
G Ͱ let x = e1 in e2 : t2

“if e1 has type t1
and G extended with x:t1 proves e2 has type t2
then let x = e1 in e2 has type t2 "

Rule for let:

English:

A Typing Derivation
A typing derivation is a "proof" that an expression is well-typed
in a particular context.

Such proofs consist of a tree of valid rules, with no obligations
left unfulfilled at the top of the tree. (ie: no axioms left over).

G, x:int Ͱ x : int G,x:int Ͱ 2 : int
G, x:int Ͱ x + 2 : int
G Ͱ λx:int. x + 2 : int -> int

notice that “int” is associated
with x in the context

Key Properties
Good type systems are sound.
• ie, well-typed programs have "well-defined" evaluation

• ie, our interpreter should not raise an exception part-way
through because it doesn't know how to continue evaluation

• colloquial phrase: “well-typed programs do not go wrong”

Examples of OCaml expressions that go wrong:
• true + 3 (addition of booleans not defined)
• let (x,y) = 17 in ... (can’t extract fields of int)
• true (17) (can’t use a bool as if it is a function)

Sound type systems accurately predict run time behavior
• if e : int and e terminates then e evaluates to an integer

Soundness = Progress + Preservation
Proving soundness boils down to two theorems:

Progress Theorem:
If Ͱ e : t then either:
(1) e is a value, or
(2) e --> e'

Preservation Theorem:
If Ͱ e : t and e --> e' then Ͱ e' : t

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ...
... various inductive data types. :-)

Next Time

From typing rules to a type checker implementation!

