COS 302 - Mathematics for Numerical Computing and Machine Learning

Fall 2020

Course home Outline and Lectures Assignments


Schedule

Date Topic Readings Videos Assignments
Mon, Aug 31 Course introduction Slides Class recording Questionnaire
Wed, Sep 2 Vectors, matrices, linear systems MML 2.0-2.2; Slides: More on vectors 3Blue1Brown videos: 1, 2, 3, 4;
More on vectors;
Q&A
 
Precept Getting set up with Overleaf, Colab Python tutorial sec. 1-5,
NumPy tutorial ("The Basics" section),
Python/NumPy Tutorial (optional - from Stanford CS231n),
Color, Audio, Face notebooks (optional - click on "Open with Google Colaboratory")
Overleaf basics; Colab basics  
Mon, Sep 7 Solving linear systems MML 2.3; Slides: Numerical analysis, Linear Systems, Optional: Strassen's method Numerical analysis, Linear Systems,
Optional: Strassen's Method;
Q&A
 
Wed, Sep 9 Groups and vector spaces MML 2.4-2.6; Slides: Linear Independence, Bases, Rank Linear Independence, Bases, Rank;
3Blue1Brown videos: 1, 2;
Q&A
 
Precept Basis concepts Slides: Groups, Vector Spaces, and Gaussian Elimination, Groups, Vector Spaces, and Gaussian Elimination  
Mon, Sep 14 Linear maps, change of basis MML 2.7-2.8; Slides: Linear Mappings Linear Mappings;
3Blue1Brown videos: 1, 2, 3;
Q&A
Assignment 1 due
Wed, Sep 16 Norms and inner products MML 3.1-3.3; Slides: Norms and inner products Dot products (3Blue1Brown);
Norms and inner products;
Q&A
 
Precept Orthogonality MML 3.4-3.8.1; Slides: Orthogonality Angles & Orthogonality, Orthogonal Bases, Orthogonal Complement
Orthogonal Projection onto 1D Subspaces
 
Mon, Sep 21 Projections and Overdetermined Systems MML 3.8.2-3.9; Slides: Orthogonal Projections and Overdetermined Linear Systems,
Gram-Schmidt Orthogonalization
Orthogonal Projections and Overdetermined Linear Systems,
Gram-Schmidt Orthogonalization;
Q&A
Assignment 2 due
Wed, Sep 23 Eigenvectors and eigenvalues; Determinant and Trace MML 4.1-4.2; Slides: Matrix Trace and Invariants 3Blue1Brown videos: 1, 2;
Matrix Trace and Invariants;
Q&A
 
Precept Eigendecomposition MML 4.4, Slides, Eigendecomposition colab, Ellipse colab, Eigendecomposition and Diagonalization colab walkthrough  
Mon, Sep 28 Singular Value Decomposition MML 4.5-4.6; Slides: SVD SVD;
Q&A
Assignment 3 due
Wed, Sep 30 SVD for PCA and MDS MML 10.1-10.6; Slides: PCA and MDS PCA and MDS;
Q&A
 
Precept LU and Cholesky decompositions MML 4.3; Slides: LU and Cholesky LU & Cholesky Decomposition Part 1 LU & Cholesky Decomposition Part 2  
Mon, Oct 5 Q&A for midterm Midterm information and sample questions Q&A Assignment 4 due
Wed, Oct 7 Exam 1:    90 minutes, available noon EDT Wed through noon EDT Thu
Mon, Oct 12 No class, no precept - fall break!
Wed, Oct 14 Differentiation and partial derivatives MML 5.1-5.2 Videos from Ryan Adams: 1, 2, 3, 4;
Q&A
 
Precept SVD review; answer questions about midterm      
Mon, Oct 19 Differentiating vector- and matrix-valued functions MML 5.3-5.5; Slides: Differentiating vector- and matrix-valued functions; Optional: MML 5.6-5.8 Gradient and directional derivative;
Differentiating vector- and matrix-valued functions;
Q&A
 
Wed, Oct 21 Random variables MML 6.0-6.2 Videos from Ryan Adams: 1, 2;
Q&A
 
Precept Sampling from distributions Pseudorandom numbers and inverse transform sampling, colab Pseudorandom numbers and inverse transform sampling  
Mon, Oct 26 More on random variables MML 6.3-6.4; Cheat sheet on probability distributions Videos from Ryan Adams: 1, 2;
Q&A
Assignment 5 due
Wed, Oct 28 Independent and dependent random variables   Video from Ryan Adams;
Q&A
 
Precept Transforming random variables MML 6.7; Transforming random variables Transforming random variables  
Mon, Nov 2 Aggregating random variables Cheat sheet on probabilistic identities and inequalities Video from Ryan Adams;
Q&A
Assignment 6 due
Tue, Nov 3 Election day - please vote, if able!
Wed, Nov 4 Multivariate Gaussian distributions MML 6.5 Video from Ryan Adams;
Video on the Box-Muller transform
 
Precept Computing expectation Expectation exercises - Solutions    
Mon, Nov 9 Monte Carlo integration Monte Carlo slides Monte Carlo integration;
Q&A
Assignment 7 due
Wed, Nov 11 Information theory   Video from Ryan Adams;
Q&A
 
Precept More on Monte Carlo More on Monte Carlo Video  
Mon, Nov 16 Optimization basics MML 7.0-7.1 Video from Ryan Adams;
Q&A
Assignment 8 due
Wed, Nov 18 Convex optimization MML 7.3 Video from Ryan Adams
Q&A
 
Precept Constrained optimization MML 7.2; Slides on Constrained Optimization    
Mon, Nov 23 Q&A for final Final exam information and sample questions Q&A Assignment 9 due
Sun, Dec 13 Exam 2:    180 minutes, will be available 1:30 EST Sunday through 1:30 EST Monday



Last update 23-Nov-2020 12:58:09
smr at princeton edu