

3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs (representation)
- red-black BSTs (insertion)
- context

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Symbol table review

implementation	guarantee			average case			ordered ops?	key interface
	search	insert	delete	search	insert	delete		
sequential search (unordered list)	n	n	n	n	n	n		equals()
binary search (sorted array)	$\log n$	n	n	$\log n$	n	n	\checkmark	compareTo()
BST	n	n	n	$\log n$	$\log n$	$\sqrt{ } n$	\checkmark	compareTo()
goal	$\log n$	\checkmark	compareTo()					

Challenge. $\Theta(\log n)$ time in worst case. optimized for teaching and coding; introduced to the world in COS 226!

This lecture. 2-3 trees and left-leaning red-black BSTs.

3.3 Balanced Search Trees

- 2-3 search trees

Algorithms

Robert Sedgewick | Kevin Wayne

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

2-3 tree demo

Search.

- Compare search key against key(s) in node.
- Find interval containing search key.
- Follow associated link (recursively).
search for H

2-3 tree: insertion

Insertion into a 2-node at bottom.

- Add new key to 2 -node to create a 3 -node.
insert G

2-3 tree: insertion

Insertion into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.
insert Z

Balanced search trees: quiz 2

What is the maximum height of a 2-3 tree with n keys?
A. $\sim \log _{3} n$
B. $\sim \log _{2} n$
C. $\quad \sim 2 \log _{2} n$
D. $\sim n$

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

- Min: $\log _{3} n \approx 0.631 \log _{2} n$. [all 3 -nodes]
- Max: $\log _{2} n$.
[all 2-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Search and insert take $\Theta(\log n)$ time in worst case

ST implementations: summary

implementation	guarantee			average case			ordered ops?	keyinterface
	search	insert	delete	search	insert	delete		
sequential search (unordered list)	n	n	n	n	n	n		equals()
binary search (sorted array)	$\log n$	n	n	$\log n$	n	n	\checkmark	compareTo()
BST	n	n	n	$\log n$	$\log n$	$\sqrt{ } n$	\checkmark	compareTo()
2-3 tree	$g n$	n	$\log n$	$\log n$	$\log n$	$\log n$	\checkmark	compareTo()

but hidden constant c is large (depends upon implementation)

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

```
fantasy code
    public void put(Key key, Value val)
{
    Node x = root;
    while (x.getTheCorrectChild(key) != null)
    {
        x = x.getTheCorrectChildKey();
        if (x.is4Node()) x.split();
    }
    if (x.is2Node()) x.make3Node(key, val);
    else if (x.is3Node()) x.make4Node(key, val);
}
```

Bottom line. Could do it, but there's a better way.

3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs (representation)

Algorithms

Robert Sedgewick | Kevin Wayne

- red-black BSTs (insertion)
https://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.

- No way to tell a 3-node from two 2-nodes.
- Can't (uniquely) map from BST back to 2-3 tree.

Approach 2. Regular BST with red "glue" nodes.

- Wastes space for extra node.
- Messy code.

Approach 3. Regular BST with red "glue" links.

- Widely used in practice.
- Arbitrary restriction: red links lean left.

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.

horizontal red links

2-3 tree

An equivalent definition of LLRB rees (without reference to 2-3 trees)

symmetric order
A BST such that:

- No node has two red links connected to it.
- Red links lean left.
- Every path from root to null link has the same number of black links.
"perfect black balance"

Balanced search trees: quiz 3

Which LLRB tree corresponds to the following 2-3 tree?

A.

B.

C. Both A and B.
D. Neither A nor B.

Search implementation for red-black BSTs

Observation. Search is the same as for BST (ignore color).
but runs faster
(because of better balance)

```
public Value get(Key key)
{
    Node x = root
    while (x != nul7)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val:
    }
    return nu71;
}
```

Remark. Many other ops (iteration, floor, rank, selection) are also identical.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent Tink
}
private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}

\section*{Review: the road to LLRB trees}


\subsection*{3.3 Balanced Search Trees}

Algorithms

Robert Sedgewick | Kevin Wayne

\section*{Insertion into a LLRB tree: overview}

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
- Symmetric order.
- Perfect black balance.
- [ but not necessarily color invariants ]

Example violations of color invariants:

right-leaning red link

two red children (a temporary 4-node)

left-left red (a temporary 4-node)

left-right red (a temporary 4-node)

To restore color invariants: perform rotations and color flips.

\section*{Elementary red-black BST operations}

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```

private Node rotateLeft(Node h)
{
assert isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;
}

```

Invariants. Maintains symmetric order and perfect black balance.

\section*{Elementary red-black BST operations}

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```

private Node rotateLeft(Node h)
{
assert isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = h.color;
h.color = RED;
return x;
}

```

Invariants. Maintains symmetric order and perfect black balance.

\section*{Elementary red-black BST operations}

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```

private Node rotateRight(Node h)
{
assert isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;
}

```

Invariants. Maintains symmetric order and perfect black balance.

\section*{Elementary red-black BST operations}

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

```

private Node rotateRight(Node h)
{
assert isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = h.color;
h.color = RED;
return x;
}

```

Invariants. Maintains symmetric order and perfect black balance.

\section*{Elementary red-black BST operations}

Color flip. Recolor to split a (temporary) 4-node.


Invariants. Maintains symmetric order and perfect black balance.

\section*{Elementary red-black BST operations}

Color flip. Recolor to split a (temporary) 4-node.


Invariants. Maintains symmetric order and perfect black balance.

Balanced search trees: quiz 4

Which sequence of elementary operations transforms the red-black BST at left to the one at right?

A. Color flip R; left rotate E.
B. Color flip R; right rotate E.
C. Color flip E; left rotate R.
D. Color flip R; left rotate R.

\section*{Insertion into a LLRB tree}
- Do standard BST insert.
- Color new link red. \(\square\) to preserve perfect black balance
- Repeat up the tree until color invariants restored:
- two left red links in a row? \(\quad \Rightarrow\) rotate right
- left and right links both red? \(\Rightarrow\) color flip
- only right link red? \(\quad \Rightarrow\) rotate left


\section*{Insertion into a LLRB tree}
- Do standard BST insert.
- Color new link red.
- Repeat up the tree until color invariants restored:
- two left red links in a row? \(\quad \Rightarrow\) rotate right
- left and right links both red? \(\Rightarrow\) color flip
- only right link red? \(\quad \Rightarrow\) rotate left

insert S E A R C H X M P L


\section*{Insertion into a LLRB tree: Java implementation}
- Do standard BST insert and color new link red.
- Repeat up the tree until color invariants restored:
- only right link red? \(\quad \Rightarrow\) rotate left
- two left red links in a row? \(\quad \Rightarrow\) rotate right
- left and right links both red? \(\Rightarrow\) color flip
```

private Node put(Node h, Key key, Value val)
{
if (h == nul7) return new Node(key, val, RED)
int cmp = key.compareTo(h.key);
if (cmp < 0) h.1eft = put(h.1eft, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;
if (isRed(h.right) \&\& !isRed(h.1eft)) h = rotateLeft(h);
if (isRed(h.1eft) \&\& isRed(h.1eft.1eft)) h = rotateRight(h); if (isRed(h.1eft) \&\& isRed(h.right)) flipColors(h);
return h;

[^0]\qquad restore color

Insertion into a LLRB tree: visualization

255 insertions in random order

Insertion into a LLRB tree: visualization

255 insertions in ascending order

Insertion into a LLRB tree: visualization

254 insertions in descending order

Balance in LLRB trees

Proposition. Height of LLRB tree is $\leq 2 \log _{2} n$.
Pf.

- Black height $=$ height of corresponding $2-3$ tree $\leq \log _{2} n$.
- Never two red links in-a-row.
\Rightarrow height of LLRB tree $\leq(2 \times$ black height $)+1$

$$
\leq 2 \log _{2} n+1
$$

- [A slightly more refined arguments show height $\leq 2 \log _{2} n$.]

ST implementations: summary

implementation	guarantee			average case			ordered ops?	key interface
	search	insert	delete	search	insert	delete		
sequential search (unordered list)	n	n	n	n	n	n		equals()
binary search (sorted array)	$\log n$	n	n	$\log n$	n	n	\checkmark	compareTo()
BST	n	n	n	$\log n$	$\log n$	$\sqrt{ } n$	\checkmark	compareTo()
2-3 tree	$\log n$	\checkmark	compareTo()					
red-black BST	n	O	$\log n$	$\log n$	$\log n$	$\log n$	\checkmark	compareTo()

3.3 Balanced Search Trees

Algorithms

Robert Sedgewick | Kevin Wayne

- 2-3 search trees
- red-black BSTs (representation)
- red-black BSTs (insertion)
- context
https://algs4.cs.princeton.edu

Balanced trees in the wild

Red-black BSTs are widely used as system symbol tables.

- Java: java.util.TreeMap, java.uti1.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: CFQ I/O scheduler, 7inux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs,

B-trees (and cousins) are widely used for file systems and databases.

- Windows: NTFS.
- Mac OS X: HFS, HFS+, APFS.
- Linux: ReiserFS, XFS, ext4, JFS, Btrfs.
- Databases: Oracle, DB2, Ingres, SQL, PostgreSQL.
btr 8_{8}^{8}
oracle
DATABASE

War story 1: red-black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.

- Red-black BST.
- Exceeding height limit of 80 triggered error-recovery process.
should support up to 2^{40} keys
Extended telephone service outage.
- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:
" If implemented properly, the height of a red-black BST with n keys is at most $2 \log _{2} n . "-$ expert witness

War story 2：red－black BSTs

Celestine Omin＊

＠cyberomin

> Follow

I was just asked to balance a Binary Search Tree by JFK＇s airport immigration．Welcome to America．

8：26 AM－ 26 Feb 2017 from Manhattan，NY

8，025 Retweets 7，087 Likes

Celestine Omin \＄＠cyberomin• 26 Feb 2017
I was too tired to even think of a BST solution．I have e been travelling for 23 hrs ． But I was also asked about 10 CS questions．
Q 8
へ】 164
O 24

Celestine Omin＠＠cyberomin • 26 Feb 2017
sad thing is，if I didn＇t give the Wikipedia definition for these questions，it was considered a wrong answer．
Q 19
〔】 324
$\bigcirc 703$

Simon Sharwood＠ssharwood • 26 Feb 2017
Replying to＠cyberomin
seriously？am reporter for＠theregister and would love to know more about your experience
$Q 2$
〔】 22
○ 17
https：／／twitter．com／cyberomin／status／835888786462625792

The red-black tree song (by Sean Sandys)
© Copyright 2020 Robert Sedgewick and Kevin Wayne

[^0]: only a few extra lines of code provides near-perfect balance

