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Symbol table review

 

 

 

 

 

 

 

 

 

 

 

 

 

Challenge.  Θ(log n) time in worst case. 

 

This lecture.  2–3 trees and left-leaning red–black BSTs.
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implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list)

n n n n n n equals()

binary search 
(sorted array)

log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

goal log n log n log n log n log n log n ✔ compareTo()

optimized for teaching and coding; 
introduced to the world in COS 226!

co-invented by Bob Sedgewick
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2–3 tree

Allow 1 or 2 keys per node. 

独2-node:  one key, two children. 

独3-node:  two keys, three children. 

 

Symmetric order.  Inorder traversal yields keys in ascending order. 

Perfect balance.  Every path from root to null link has same length. 
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between E and J

larger than J
smaller than E

S XA C PH

R

M

L

E J

3-node 2-node

null link

how to maintain?



2–3 tree demo

Search. 

独Compare search key against key(s) in node. 

独Find interval containing search key. 

独Follow associated link (recursively).
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2–3 tree:  insertion

Insertion into a 2-node at bottom. 

独Add new key to 2-node to create a 3-node.
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2–3 tree:  insertion

Insertion into a 3-node at bottom. 

独Add new key to 3-node to create temporary 4-node. 

独Move middle key in 4-node into parent. 

独Repeat up the tree, as necessary.  

独If you reach the root and it’s a 4-node, split it into three 2-nodes.
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2–3 tree construction demo
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What is the maximum height of a 2–3 tree with n keys?  

A.   ~ log3 n 

B.   ~ log2 n 

C.   ~ 2 log2 n 

D.    ~ n

height  ~  log3 n

Balanced search trees:  quiz 2
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height  =  log2 (n + 1)

all 3-nodes (min height)

all 2-nodes (max height)



2–3 tree:  performance

Perfect balance.  Every path from root to null link has same length. 

 

 

 

 

 

 

 

Tree height. 

独Min:  log3 n  ≈  0.631 log2 n.  [all 3-nodes] 

独Max:  log2 n.      [all 2-nodes] 

独Between 12 and 20 for a million nodes. 

独Between 18 and 30 for a billion nodes. 

 

 

Bottom line.  Search and insert take Θ(log n) time in worst case

10

Typical 2-3 tree built from random keys



ST implementations:  summary
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implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list)

n n n n n n equals()

binary search 
(sorted array)

log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

2–3 tree log n log n log n log n log n log n ✔ compareTo()

but hidden constant c is large 
(depends upon implementation)



“  Beautiful algorithms are not always the most useful. ”

           —  Donald Knuth

2–3 tree:  implementation?

Direct implementation is complicated, because: 

独Maintaining multiple node types is cumbersome. 

独Need multiple compares to move down tree. 

独Need to move back up the tree to split 4-nodes. 

独Large number of cases for splitting. 

 

 

 

 

 

 

 

 

 

 

Bottom line.  Could do it, but there’s a better way.

public void put(Key key, Value val) 
{ 
   Node x = root; 
   while (x.getTheCorrectChild(key) != null) 
   { 
      x = x.getTheCorrectChildKey(); 
      if (x.is4Node()) x.split(); 
   } 
   if      (x.is2Node()) x.make3Node(key, val); 
   else if (x.is3Node()) x.make4Node(key, val); 
}

fantasy code

12
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How to implement 2–3 trees with binary trees?

Challenge.  How to represent a 3 node? 

 

 

Approach 1.  Regular BST. 

独No way to tell a 3-node from two 2-nodes. 

独Can’t (uniquely) map from BST back to 2–3 tree.  

 

 

Approach 2.  Regular BST with red “glue” nodes. 

独Wastes space for extra node. 

独Messy code. 

 

 

Approach 3.  Regular BST with red “glue” links. 

独Widely used in practice. 

独Arbitrary restriction:  red links lean left.
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Left-leaning red–black BSTs (Guibas–Sedgewick 1979 and Sedgewick 2007)

1.  Represent 2–3 tree as a BST. 

2.  Use “internal” left-leaning links as “glue” for 3–nodes. 
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larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a
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than b

a

b
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Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link
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b
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1−1 correspondence between red-black and 2-3 trees
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nodes within a 3-node

2–3 tree corresponding red–black BST



Left-leaning red–black BSTs:  1–1 correspondence with 2–3 trees

Key property.  1–1 correspondence between 2–3 trees and LLRB trees.
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1−1 correspondence between red-black and 2-3 trees
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An equivalent definition of LLRB trees (without reference to 2–3 trees)

 

A BST such that: 

独No node has two red links connected to it. 

独Red links lean left.  

独Every path from root to null link has the same number of black links.
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“perfect black balance”

symmetric order

color invariants
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Balanced search trees:  quiz 3

Which LLRB tree corresponds to the following 2–3 tree?

 
 
 
 
 
 
 

C. Both A and B. 

D. Neither A nor B.
18
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Search implementation for red–black BSTs

Observation.  Search is the same as for BST (ignore color). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark.  Many other ops (iteration, floor, rank, selection) are also identical.
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public Value get(Key key) 
{ 
   Node x = root; 
   while (x != null) 
   { 
      int cmp = key.compareTo(x.key); 
      if      (cmp < 0) x = x.left; 
      else if (cmp > 0) x = x.right; 
      else return x.val; 
   } 
   return null; 
}

but runs faster 
(because of better balance)

1−1 correspondence between red-black and 2-3 trees
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Red–black BST representation

Each node is pointed to by precisely one link (from its parent)  ⇒ 

can encode color of links in nodes. 
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private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val)
   {
      this.key   = key;
      this.val   = val;
      this.N     = 1;
      this.color = RED;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J
G

E

A D
C

Node representation for red−black trees

h
h.left.color

is RED
h.right.color

is BLACK
 private class Node 
 { 
    Key key; 
    Value val; 
    Node left, right; 
 
 }

private boolean isRed(Node x) 
{ 
   if (x == null) return false; 
   return x.color == RED; 
} null links are black

private static final boolean RED   = true; 
private static final boolean BLACK = false;

boolean color;   // color of parent link



1−1 correspondence between red-black and 2-3 trees
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how we draw LLRB trees
(color in links)

Review:  the road to LLRB trees
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how we implement LLRB trees
(color in nodes)

3-nodes “glued” together with red links
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Insertion into a LLRB tree:  overview

Basic strategy.  Maintain 1–1 correspondence with 2–3 trees. 

 

During internal operations, maintain: 

独Symmetric order. 

独Perfect black balance. 

独[ but not necessarily color invariants ]  

 

Example violations of color invariants: 

 

 

 

 

 

 

 

To restore color invariants:  perform rotations and color flips.
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left-right red
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Elementary red–black BST operations

Left rotation.  Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
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greater 
than S

x

h

S

between 
E and S

less 
than E

E

rotate E left
(before)

 private Node rotateLeft(Node h) 
 { 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Left rotation.  Orient a (temporarily) right-leaning red link to lean left. 

Invariants.  Maintains symmetric order and perfect black balance.
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greater 
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between 
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S

rotate E left
(after)

 private Node rotateLeft(Node h) 
 { 
    assert isRed(h.right); 
    Node x = h.right; 
    h.right = x.left; 
    x.left = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Right rotation.  Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
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rotate S right
(before)

greater 
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h
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between 
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S

 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }



Elementary red–black BST operations

Right rotation.  Orient a left-leaning red link to (temporarily) lean right. 

Invariants.  Maintains symmetric order and perfect black balance.
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 private Node rotateRight(Node h) 
 { 
    assert isRed(h.left); 
    Node x = h.left; 
    h.left = x.right; 
    x.right = h; 
    x.color = h.color; 
    h.color = RED; 
    return x; 
 }

rotate S right
(after)

greater 
than S

h

x

S

between 
E and S

less 
than E

E



Elementary red–black BST operations

Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.
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 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    assert isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 }

flip colors
(before)

E



Elementary red–black BST operations

Color flip.  Recolor to split a (temporary) 4-node. 

Invariants.  Maintains symmetric order and perfect black balance.
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 private void flipColors(Node h) 
 { 
    assert !isRed(h); 
    assert isRed(h.left); 
    assert isRed(h.right); 
    h.color = RED; 
    h.left.color = BLACK; 
    h.right.color = BLACK; 
 }

flip colors
(after)

E



Balanced search trees:  quiz 4

Which sequence of elementary operations transforms the red–black BST at left  
to the one at right?

 
 
 
 
 
 
 

A. Color flip R; left rotate E. 

B. Color flip R; right rotate E. 

C. Color flip E; left rotate R. 

D. Color flip R; left rotate R.
30
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Insertion into a LLRB tree

独Do standard BST insert. 

独Color new link red. 

独Repeat up the tree until color invariants restored: 

– two left red links in a row?   ⇒  rotate right  

– left and right links both red?   ⇒  color flip 

– only right link red?     ⇒  rotate left
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Insertion into a LLRB tree

独Do standard BST insert. 

独Color new link red. 

独Repeat up the tree until color invariants restored: 

– two left red links in a row?   ⇒  rotate right  

– left and right links both red?   ⇒  color flip 

– only right link red?     ⇒  rotate left
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Red–black BST construction demo
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Insertion into a LLRB tree:  Java implementation

独Do standard BST insert and color new link red. 

独Repeat up the tree until color invariants restored: 

– only right link red?     ⇒  rotate left  

– two left red links in a row?   ⇒  rotate right  

– left and right links both red?   ⇒  color flip
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 private Node put(Node h, Key key, Value val) 
 { 
    if (h == null) return new Node(key, val, RED); 
 
    int cmp = key.compareTo(h.key); 
    if      (cmp < 0) h.left  = put(h.left,  key, val); 
    else if (cmp > 0) h.right = put(h.right, key, val); 
    else h.val = val; 
 
 
 
 

    return h; 
 }

if (isRed(h.right) && !isRed(h.left))     h = rotateLeft(h); 
if (isRed(h.left)  && isRed(h.left.left)) h = rotateRight(h); 
if (isRed(h.left)  && isRed(h.right))     flipColors(h);

insert at bottom 
(and color it red)

restore color 
invariants

only a few extra lines of code provides near-perfect balance



Insertion into a LLRB tree:  visualization
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255 insertions in random order



Insertion into a LLRB tree:  visualization
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255 insertions in ascending order



Insertion into a LLRB tree:  visualization
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254 insertions in descending order



Balance in LLRB trees

Proposition.  Height of LLRB tree is ≤ 2 log2 n.  

Pf. 

独Black height = height of corresponding 2–3 tree  ≤  log2 n. 

独Never two red links in-a-row. 

⇒  height of LLRB tree ≤  (2 ! black height) + 1 

    ≤  2 log2 n  +  1. 

独[ A slightly more refined arguments show height ≤  2 log2 n. ]
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height  ≤  2 log2 n



ST implementations:  summary

42

implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list)

n n n n n n equals()

binary search 
(sorted array)

log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

2–3 tree log n log n log n log n log n log n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

hidden constant c is small 
(≤ 2 log2 n compares)



3.3  BALANCED SEARCH TREES

‣ 2–3 search trees 

‣ red–black BSTs (representation) 

‣ red–black BSTs (insertion) 

‣ context
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Balanced trees in the wild

Red–black BSTs are widely used as system symbol tables. 

独Java:  java.util.TreeMap, java.util.TreeSet. 

独C++ STL:  map, multimap, multiset. 

独Linux kernel:  CFQ I/O scheduler, linux/rbtree.h. 

 

Other balanced BSTs.  AVL trees, splay trees, randomized BSTs, …. 

 

B-trees (and cousins) are widely used for file systems and databases. 

独Windows:  NTFS. 

独Mac OS X:  HFS, HFS+, APFS.  

独Linux:  ReiserFS, XFS, ext4, JFS, Btrfs. 

独Databases:  Oracle, DB2, Ingres, SQL, PostgreSQL.
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War story 1:  red–black BSTs

Telephone company contracted with database provider to build real-time database 

to store customer information. 

 

Database implementation. 

独Red–black BST. 

独Exceeding height limit of 80 triggered error-recovery process. 

 

 

Extended telephone service outage. 

独Main cause = height bound exceeded! 

独Telephone company sues database provider. 

独Legal testimony: 

45

should support up to 240 keys

“ If implemented properly, the height of a red–black BST 

   with n keys is at most 2 log2 n. ”    —  expert witness



War story 2:  red–black BSTs
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https://twitter.com/cyberomin/status/835888786462625792

https://twitter.com/cyberomin/status/835888786462625792


The red–black tree song (by Sean Sandys)
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I see a brand new node,
I want to paint it black.
We need a balanced tree,
we’ve got to paint it black.

I see a brand new node,
I want to paint it black.
No time for AVL trees,
We must paint it black.

I want to find my key in
log n time—that’s all.
Rotating subtrees ’round,
sure can be a ball.

I see a brand new node,
I want to paint it black.
Can’t have a lot of red nodes,
we must paint them black.

Unfortunately, coding them
can be a $!#%.
If we had half a brain,
to splay trees we would switch.

And if they’re still confusing,
you should have no fear.
Because outside this class,
of them you’ll never hear.

I wanna see it,
painted, painted black.
Black is nice.

I wanna see the nodes painted black.
Black is nice.

I wanna see ’em
painted, painted, painted, painted black.

Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mm.
Mm mm mm mm mm mm mm.
Mm mm mm mm mm-mmm.

performed by U. Washington CSE Band ’02

http://gsc-history.cs.washington.edu/2002-2003/orientation/
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