
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 8/30/20 8:47 PM

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applications
https://algs4.cs.princeton.edu

see precept

https://algs4.cs.princeton.edu

Steps to develop a usable algorithm to solve a computational problem.

2

Subtext of today’s lecture (and this course)

efficient?

yes

model the
problem

design an
algorithm

understand
why not

solve the
problem

try again

no

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applicationsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Disjoint sets. A collection of sets containing n elements, with each element in exactly one set.

Leader. Each set designates one if its elements as “leader” to uniquely identify the set.

Find. Return the leader of the set containing element p.

Union. Merge the set containing element p with the set containing element q.

Simplifying assumption. The n elements are named 0, 1, …, n – 1.

4

Union–find data type

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

8 elements, 3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5)
leader is 4

find(1) = 4
find(4) = 4
find(5) = 4

leader is 6

Disjoint sets can represent:

独Connected components in a graph.

独Interlinked friends in a social network.

独Interconnected devices in a mobile network.

独Equivalent variable names in a Fortran program.

独Clusters of conducting sites in a composite system.

独Contiguous pixels of the same color in a digital image.

独Adjoining stones of the same color in the game of Hex.

5

Union–find data type: applications

see Assignment 1

6

Goal. Design an efficient union–find data type.

独Number of elements n can be huge.

独Number of operations m can be huge.

独Union and find operations can be intermixed.

Union–find data type: API

 public class UF

UF(int n) initialize with n singleton sets (0 to n – 1)

void union(int p, int q) merge sets containing elements p and q

int find(int p) return the leader of set containing element p

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applicationsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Quick-find

Data structure.

独Integer array leader[] of length n.

独Interpretation: leader[p] is the leader of the set containing element p.

Q. How to implement find(p)?

A. Easy, just return leader[p].

8

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

leader[i] = 0

3 disjoint sets

leader[i] = 1 leader[i] = 8

Quick-find

Data structure.

独Integer array leader[] of length n.

独Interpretation: leader[p] is the leader of the set containing element p.

Q. How to implement union(p, q)?

A. Change all entries whose identifier equals leader[p] to leader[q].

9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

leader[]

union(6, 1)

problem: many values can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

or vice versa

public class QuickFindUF
{
 private int[] leader;

 public QuickFindUF(int n)
 {
 leader = new int[n];
 for (int i = 0; i < n; i++)
 leader[i] = i;
 }

 public int find(int p)
 { return leader[p]; }

 public void union(int p, int q)
 {
 int pLeader = leader[p];
 int qLeader = leader[q];
 for (int i = 0; i < leader.length; i++)
 if (leader[i] == pLeader)
 leader[i] = qLeader;
 }

}

Quick-find: Java implementation

10

set leader of each element to itself

change all entries with leader[p] to leader[q]

return the leader of p

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

(1 array access)

(n array accesses)

(≥ n array accesses)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Cost model. Number of array accesses (for read or write).

Union is too expensive. Processing a sequence of m union operations

on n elements takes ≥ mn array accesses.

11

Quick-find is too slow

algorithm initialize union find

quick-find n n 1

number of array accesses (ignoring leading constant)

quadratic in input size!

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applicationsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structure: Forest-of-trees.

独Interpretation: elements in one rooted tree correspond to one set.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement find(p) operation?

A. Use tree roots as leaders ⇒ return root of tree containing p.

parent of 3 is 4

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

13

Quick-union

5

70 1 6

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

p 33

4

8

parent[]

Union–find quiz 1

Data structure: Forest-of-trees.

独Interpretation: elements in one rooted tree correspond to one set.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

Which is not a valid way to implement union(3, 5) ?

A. Set parent[6] = 9.

B. Set parent[9] = 6.

C. Set parent[3] = parent[4] = parent[9] = 6.

D. Set parent[3] = 5.

14

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

6

52

9

4

3

parent[]

3 would no longer be in same tree as 2, 4, and 9

Data structure: Forest-of-trees.

独Interpretation: elements in one rooted tree correspond to one set.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

15

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

union(3, 5)

A. Set parent of p’s root to q’s root.

6

52

9

4

3

or vice versa

Data structure: Forest-of-trees.

独Interpretation: elements in one rooted tree correspond to one set.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

Q. How to implement union(p, q)?

16

Quick-union

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one value changes

70 1 8

p

q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent of p’s root to q’s root.

2

9

4

3

6

5

or vice versa

Quick-union demo

17

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] parent;

 public QuickUnionUF(int n)
 {
 parent = new int[n];
 for (int i = 0; i < n; i++)
 parent[i] = i;
 }

 public int find(int p)
 {
 while (p != parent[p])
 p = parent[p];
 return p;
 }

 public void union(int p, int q)
 {
 int root1 = find(p);
 int root2 = find(q);
 parent[root1] = root2;
 }
}

set parent of each element to itself

(to create forest of n singleton trees)

follow parent pointers until reach root

link root of p to root of q

18
https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Cost model. Number of array accesses (for read or write).

Running time.

独Union: takes constant time, given two roots.

独Find: takes time proportional to depth of node in tree.

19

Quick-union analysis

0

2 2 22

1 111

3 x

depth(x) = 3

x

worst-case depth = n-1

0

1

2

3

4

5

6

7

8

9

Cost model. Number of array accesses (for read or write).

Running time.

独Union: takes constant time, given two roots.

独Find: takes time proportional to depth of node in tree.

Too expensive (if trees get tall). Processing some sequences of

m union and find operations on n elements takes ≥ mn array accesses.

20

Quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

worst-case number of array accesses (ignoring leading constant)

1.5 UNION–FIND

‣ union–find data type

‣ quick-find

‣ quick-union

‣ weighted quick-union

‣ applicationsROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

When linking two trees, which strategy is most e"ective?

A. Link the root of the smaller tree to the root of the larger tree.

B. Link the root of the larger tree to the root of the smaller tree.

C. Flip a coin; randomly choose between A and B.

(size = 16, height = 4)

Union–find quiz 2

22

smaller tree
(size = 6, height = 2)

larger tree

独Modify quick-union to avoid tall trees.

独Keep track of size of each tree = number of elements.

独Always link root of smaller tree to root of larger tree.

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always puts the
smaller tree lower

might put the
larger tree lower

r
2

r
1

r
2

r
1

23

Weighted quick-union (link-by-size)

reasonable alternative: link-by-height

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i]

to count number of elements in the tree rooted at i, initially 1.

独Find: identical to quick-union.

独Union: link root of smaller tree to root of larger tree; update size[].

24

public void union(int p, int q)
{
 int root1 = find(p);
 int root2 = find(q);
 if (root1 == root2) return;

 if (size[root1] >= size[root2])
 { int temp = root1; root1 = root2; root2 = temp; }

 parent[root1] = root2;
 size[root2] += size[root1];

}

afterwards, root1 is

root of smaller tree

link root of smaller tree

to root of larger tree

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

update size

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Quick-union vs. weighted quick-union: larger example

25

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Proposition. Depth of any node x ≤ log2 n.

26

Weighted quick-union analysis

 n = 10
depth(x) = 3 ≤ log2 n

0

2 2 22

1 111

depth 3 x

Weighted quick-union analysis

Proposition. Depth of any node x ≤ log2 n.

Pf.

独Depth of x does not change unless root of tree T1 containing x is linked to the

root of a larger tree T2, forming a new tree T3.

独In this case:

– depth of x increases by exactly 1

– size of tree containing x at least doubles

because size(T3) = size(T1) + size(T2)

 ≥ 2 ! size(T1).

27

 T2

T1
x

can happen at most log2 n times. Why?

log2 n

1 → 2 → 4 → 8 → 16 → � → n

28

Proposition. Depth of any node x ≤ log2 n.

Running time.

独Union: takes constant time, given two roots.

独Find: takes time proportional to depth of node in tree.

Weighted quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

weighted quick-union n log n log n

worst-case number of array accesses (ignoring leading constant)

log mean logarithm,

for some constant base

Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

Ex. [109 union–find operations on 109 elements]

独Weighted quick-union reduces run time from 30 years to 6 seconds.

独Supercomputer won’t help much; good algorithm enables solution.

29

order of growth for m ≥ n union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted quick-union m log n

QU + path compression m log n

weighted QU + path compression m α(n)

Summary

inverse Ackermann function

(see COS 423)

fastest for percolation?

© Copyright 2020 Robert Sedgewick and Kevin Wayne

30

