
Project	4	
Inter-Process	Communication	and	

Process	Management
COS	318
Fall	2016



Project	4:	IPC	and	Process	
Management

• Goal:	Add	new	IPC	mechanism	and	process	
management	to	the	kernel.

• Read	the	project	spec	for	the	details.
• Get	a	fresh	copy	of	the	start	code	from	the	lab	

machines.	(/u/318/code/project4/)
• Start	as	early as	you	can	and	get	as	much	done	as	

possible	by	the	design	review.	



Project	4:	Schedule

• Design	Review:
- Thursday	11/17
- Sign	up	on	the	project	page;
- Please,	draw	pictures	and	write	your	idea	down	(1	

piece	of	paper).
• Due	date:	Tuesday,	11/22,	11:55pm.



Project	4:	Overview

• Implement	a	spawn	system	call.
• Implement	inter-process	communication	using	

message	boxes.
• Implement	a	handler	for	the	keyboard	interrupt.
• Implement	a	kill	system	call.
• Implement	a	wait	system	call.



Design	Review

• Design	Review:
- Answer	the	questions:

ü Process	Management:	
² How	will	your	spawn,	wait,	and	kill	work?
² How	will	you	satisfy	the	requirement	that	“if	a	process	is	killed	

while	blocked	on	a	lock,	semaphore,	condition	variable	or	barrier,	
the	other	processes	which	interact	with	that	synchronization	
primitive	[will]	be	unaffected?

ü Mailboxes:
² What	fields	will	the	structs need?	
² Which	synchronization	primitives	will	you	use?



Implementation	Checklist

• do_spawn:	creates	a	new	process
• do_mbox_*:	mbox functions	to	enable	IPC
- open, close, send, recv, is_full.

• Handle	keyboard	input:
- putchar();
- do_getchar();

• do_kill():	kills	a	process.
• do_wait():	waits	on	a	process.



Spawn

• Kernel	has	a	fixed	array	of	PCBs.
• What	info	do	you	need	to	initialize	a	process?
- PID
- New	stacks	(user/stack)
- Entry	point	(ramdisk_find)
- total_ready_priority (lottery	scheduling)

- Scheduler	uses	lottery	scheduling:	make	sure	you	
keep	the	sum	of	the	priorities	updated.



Message	Boxes
• Bounded	buffer:
- Has	fixed	size;
- FIFO;
- Variable	size	message.

• Multiple	producers:
- Put	data	into	the	buffer.

• Multiple	consumers:
- Remove	data	from	the	buffer.

• Blocking	operations:
- Sender	blocks	if	not	enough	space;
- Receiver	blocks	if	no	message.

• Review	Lecture	11	on	Message	Passing.
• Read	MOS	2.3.7	and	2.3.8.



Mailbox	– Implementation	

• Buffer	management:
- Circular	buffer:	head	and	tail	pointers.

• Bounded	buffer	problem:
- Use	locks	and	condition	variables	to	solve	this	

problem	as	shown	in	class;
- Two	condition	variables:	moreData and	moreSpace (or	

any	other	names	you	prefer).



Keyboard	– Overview

• How	does	the	keyboard	interact	with	the	OS?
- A	hardware	interrupt	(IRQ1)	is	generated	when	a	key	

is	pressed	or	released;
- Interrupt	handler	talks	to	the	hardware	and	gets	the	

scan	code	of	the	pressed/released	key;
- If	it	is	SHIFT/CTRL/ALT/…,	some	internal	states	are	

changed;
- Otherwise	the	handler	converts	the	scan	code	into	an	

ASCII	character	depending	on	the	states	of	
SHIFT/NUM	LOCK/…



Keyboard	– Overview

• How	does	the	keyboard	interact	with	the	OS?
- init_idt() in	kernel.c sets	handler	to	

irq1_entry in	entry.S;
- irq1_entry calls	keyboard_interrupt in	

keyboard.c;
- keyboard_interrupt talks	to	the	hardware	and	

gets	the	scan	code	back	(key	=	inb(0x60))	and	calls	the	
key	specific	handler;



Keyboard	– Overview

• If	key	is	SHIFT/CTRL/ALT/…,	some	internal	states	
are	changed.

• Otherwise	normal_handler converts	the	scan	
code	into	an	ASCII	character.

• normal_handler calls	putchar() to	add	
character	to	the	keyboard	buffer.

• You	need	to	implement	putchar().
• You	also	need	to	implement	do_getchar(),	

which	is	called	by	the	shell	via	syscall (get_char).



Keyboard	– Implementation

• It	is	a	bounded	buffer	problem:
- Use	mailbox.

• But,	there	are	some	variations:
- Single	producer	(IRQ1	handler);
- Multiple	consumers	(more	than	one	process	could	use	

keyboard);
- Producer	cannot	block	– discard	character	if	buffer	is	

full.



Keyboard	– Implementation

• Producer	should	not	be	blocked:
- Solution:	check	and	send	message	only	if	mailbox	is	

not	full,	otherwise	discard	it.
- Use	the	function	do_mbox_full().

• Is	that	all?
- What	if	a	process	being	interrupted	by	IRQ1	is	

currently	calling	get_char()?
- Address	how	to	fix	this	issue	in	the	design	review.



Kill

• A	process	should	be	killed	immediately.
- Which	queue	it	is	in	(ready,	blocked,	sleeping,	etc.)	

doesn’t	matter	– kill	it!
• Do	not	reclaim	locks	(this	is	extra	credit).
• Reclaim	memory:
- PCB;
- Stacks;
- Look	at	robinhood test	case	to	figure	out	what	else	

needs	to	be	reclaimed.
• Update	total_ready_priority.



Wait

• Waits	for	a	process	to	terminate:
- Blocks	until	the	process	is	killed	or	exits	normally.

• What	do	you	need	to	add	to	the	PCB	to	
implement	this	behavior?

• Return	-1	on	failure,	0	on	success.



Hints/Tips

• List	of	functions	to	implement	is	straightforward.	
But,	realizing	the	implementation	is	tricky!

• Look	at	util.h and	check	out	any	of	the	header	
files	in	the	project	folder	for	a	helper	function	you	
might	want.

• Use	the	settest script	(two	tests	provided).
• You	will	need	to	change	data	structures	and	

functions	that	are	not	annotated	with	TODO	in	
the	source	code.


