Project 4
Inter-Process Communication and
Process Management

Project 4: IPC and Process
Management

Goal: Add new IPC mechanism and process
management to the kernel.

Read the project spec for the details.

Get a fresh copy of the start code from the lab
machines. (/u/318/code/project4/)

Start as early as you can and get as much done as
possible by the design review.

Project 4: Schedule

* Design Review:
— Thursday 11/19
— Sign up on the project page;
— Please, draw pictures and write your idea down (1
piece of paper).

 Due date: Tuesday, 11/24, 11:55pm.

Project 4: Overview

Implement a spawn system call.

Implement inter-process communication using
message boxes.

mp
mp

mp

ement a handler for the keyboard interrupt.
ement a kill system call.

ement a wait system call.

Design Review

* Design Review:

— Answer the questions:

v" Process Management:
<> How will your spawn, wait, and kill work?
<> How will you satisfy the requirement that “if a process is killed
while blocked on a lock, semaphore, condition variable or barrier,
the other processes which interact with that synchronization
primitive [will] be unaffected?
v" Mailboxes:
<> What fields will the structs need?

<> Which synchronization primitives will you use?

Implementation Checklist

do spawn: creates a new process
do mbox *: mbox functions to enable IPC
- open, close, send, recv, 1is full.

Handle keyboard input:
— putchar();
- do_getchar();

do kill():killsa process.
do wait ():waits on a process.

Spawn

Kernel has a fixed array of PCBs.

What info do you need to initialize a process?

PID

New stacks (user/stack)

Entry point (ramdisk_find)

total ready_ priority (lottery scheduling)

Scheduler uses lottery scheduling: make sure you
keep the sum of the priorities updated.

Message Boxes

Bounded buffer:

— Has fixed size;

- FIFQ;

— Variable size message.
Multiple producers:

— Put data into the buffer.

Multiple consumers:
— Remove data from the buffer.
Blocking operations:

— Sender blocks if not enough space;
— Receiver blocks if no message.

Review Lecture 11 on Message Passing.
Read MOS 2.3.7 and 2.3.8.

Mailbox — Implementation

* Buffer management:
— Circular buffer: head and tail pointers.

 Bounded buffer problem:

— Use locks and condition variables to solve this
problem as shown in class;

— Two condition variables: moreData and moreSpace
(or any other names you prefer).

Keyboard — Overview

How does the keyboard interact with the OS?

A hardware interrupt (IRQ1) is generated when a key
is pressed or released;

Interrupt handler talks to the hardware and gets the
scan code of the pressed/released key;

If it is SHIFT/CTRL/ALT/..., some internal states are
changed;

Otherwise the handler converts the scan code into an
ASCII character depending on the states of SHIFT/
NUM LOCK/...

Keyboard — Overview

* How does the keyboard interact with the OS?
- 1init idt () in kernel.c sets handler to
1irql entryinentry.S;
- 1irql entry callskeyboard interruptin
keyboard.c;

- keyboard interrupt talks to the hardware and
gets the scan code back (key = inb(0x60)) and calls the

key specific handler;

Keyboard — Overview %?

If key is SHIFT/CTRL/ALT/..., some internal states

are changed.

Otherwise normal handler converts the scan
code into an ASCII character.

normal handler calls putchar () to add
character to the keyboard buffer.

You need to implement putchar ().

You also need to implement do getchar (),
which is called by the shell via syscall (get_char).

Keyboard — Implementation

* Itis a bounded buffer problem:
— Use mailbox.

 But, there are some variations:
— Single producer (IRQ1 handler);

— Multiple consumers (more than one process could use
keyboard);

— Producer cannot block — discard character if buffer is
full.

Keyboard — Implementation

* Producer should not be blocked:

— Solution: check and send message only if mailbox is
not full, otherwise discard it.

— Use the function do_mbox_full().

e |sthat all?

— What if a process being interrupted by IRQ1 is
currently calling get_char()?

— Address how to fix this issue in the design review.

Kill

A process should be killed immediately.

— Which queue it is in (ready, blocked, sleeping, etc.)
doesn’t matter — kill it!

Do not reclaim locks (this is extra credit).
Reclaim memory:

- PCB,;

— Stacks;

— Look at robinhood test case to figure out what else
needs to be reclaimed.

Update total ready priority.

Walit

Waits for a process to terminate:

— Blocks until the process is killed or exits normally.

What do you need to add to the PCB to
implement this behavior?

Return -1 on failure, O on success.

Hints/Tips

List of functions to implement is straightforward.
But, realizing the implementation is tricky!

Look at util.h and check out any of the header
files in the project folder for a helper function you

might want.
Use the settest script (two tests provided).

You will need to change data structures and
functions that are not annotated with TODO in

the source code.

