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Web Services Are Huge




Web Services Are Huge

2.5 B - content items shared
[1][2]

2.7 B - “likes”
n < 300 M - photos uploaded
105 TB - data scanned
500 TB - new data ingested

[1] Facebook data science. https://www.facebook.com/data
[2] “How Big Is Facebook’s Data?” https://goo.gl/bBN2ch




Huge Web Services Shard Data

5 B

Massive amount of data

- must be distributed across servers

Reads dominate the workloads
- heed to be as fast as possible!
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Read-Only Transactions

* Transactions that do not modify data

« Consistently read data across servers



The Power of Read-Only Txn

» Consistency restricts what can be read
— Eliminates unacceptable combinations

« Compatibility enables write transactions
— Write transactions atomically update data

* Higher power - more useful
— Stronger consistency = higher power
— Compatibility = higher power



Fundamental Tradeoff

High Power Low Latency
T T
 Reduces anomalies » Better user experience

(the ACL - Photo example)

« Easier to reason about -+ Higher revenue

Our study proves:

highest power + lowest latency Is
Impossible




The SNOW Properties

[S]trict serializability
Highest
} Power
[N]Jon-blocking operations
[O]ne response per read
Lowest
} Latency
[W]rite transactions that conflict



[S]trict Serializability

« Strongest model: real-time + total order
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[S]trict Serializability

« Strongest model: real-time + total order
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[N]Jon-blocking Operations

Do not wait on external events
— Locks, timeouts, messages, etc.

* Lower latency
— Save the time spent blocking



[O]ne Response

* One round-trip

— No message redirection
* Centralized components: coordinator, etc.

— No retries
— Save the time for extra round-trips

* One value per response
— Less time for transmitting, marshaling, etc.



[W]rite Transactions That Conflict

 Compatible with write transactions
— Richer system model
— Easier to program



The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties



Why SNOW Is Impossible
- S S [Cw

Assume
SNOW

A = new

B := new
Violates
property S
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SNOW Is Tight

S >» S+N+O: COPS-DW

N S+N+W: Eiger

O S+0O+W: Spanner-RO
W N+O+W: Spanner-Snap

SNOW-optimal: have any 3 properties
Latency-optimal: have N and O



Study Existing Systems with SNOW
SNOW-optimal and latency-optimal

System S

Spanner-Snap
[OSDI '12]

Yesquel
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Study Existing Systems with SNOW
SNOW:-optimal
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Study Existing Systems with SNOW

Candidates for Improvement

System S N O w

COPS | % | v
Rococo v v

Many more
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Improve Existing Systems
with the SNOW Theorem

« COPS [SOSP ’11]

— Geo-replicated
— Causally consistent

—Read-only txn: X N & W

* Rococo [OSDI '14]

— Supports general transactions
— Strictly serializable
—Read-onlytxn: S W & W



New Algorithm Designs

« COPS-SNOW
— Latency-optimal (N + O)

« Rococo-SNOW
— SNOW-optimal (S + O + W)




Rococo’s Read-Only Txn (S + W)
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Rococo-SNOW (S+0+W)
Cw

- W starts
A = “new”
B := “new”
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Evaluation of Rococo-SNOW

* To understand
— Latency of read-only transactions
— Throughput of other types of transactions

* Experiment configuration

— ldentical to Rococo’s
— TPC-C workloads

* $p’ https://github.com/USC-NSL/Rococo-SNOW
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Significantly Lower Latency
for Read-Only Txn
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Higher Throughput

under High Contention
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Conclusion

« The SNOW Theorem for read-only txns
— Impossible to have all of the SNOW properties
— The SNOW Theorem is tight
— Understands what is possible

« SNOW helps understand existing systems
— Many are not yet optimal

 Rococo-SNOW
— SNOW Theorem guided SNOW-optimal design

— Significantly higher throughput and lower latency
under high contention
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