The SNOW Theorem
and Latency-Optimal
Read-Only Transactions

Haonan Lu®,
Christopher Hodsdon*, Khiem Ngo#,
Shuai MuT, Wyatt Lloyd*

*University of Southern California
and Princeton University
TNew York University

Web Services Are Huge

Web Services Are Huge

2.5 B - content items shared
[1][2]

2.7 B - “likes”
n < 300 M - photos uploaded
105 TB - data scanned
500 TB - new data ingested

[1] Facebook data science. https://www.facebook.com/data
[2] “How Big Is Facebook’s Data?” https://goo.gl/bBN2ch

Huge Web Services Shard Data

5 B

Massive amount of data

- must be distributed across servers

Reads dominate the workloads
- heed to be as fast as possible!

Simple Rea

ds Are Insufficient

Web

Load Clients
Page

Not

Datacenter Storage Tier
Servers

/\(ﬁ

Read

S : |
Public
N\Set
de”
KHead @
JQRe
———

Photo=E

(1) & | &=

\/

J

Read-Only Transactions

* Transactions that do not modify data

« Consistently read data across servers

The Power of Read-Only Txn

» Consistency restricts what can be read
— Eliminates unacceptable combinations

« Compatibility enables write transactions
— Write transactions atomically update data

* Higher power - more useful
— Stronger consistency = higher power
— Compatibility = higher power

Fundamental Tradeoff

High Power Low Latency
T T
 Reduces anomalies » Better user experience

(the ACL - Photo example)

« Easier to reason about -+ Higher revenue

Our study proves:

highest power + lowest latency Is
Impossible

The SNOW Properties

[S]trict serializability
Highest
} Power
[N]Jon-blocking operations
[O]ne response per read
Lowest
} Latency
[W]rite transactions that conflict

[S]trict Serializability

« Strongest model: real-time + total order

- - YACL “Photo
= — W staris
Private Id\ .
“Photo B is {ACL = Private

private!” Photo B Upload Photo B

= W finishes
R starts = & —

R finishes — &=

10

[S]trict Serializability

« Strongest model: real-time + total order

G Si Senwo Cw

- W starts

R starts -

Photo B

{ACL .= Private

uPuinc + PhOtO Au Up|Oad PhOtO B

“Photo B is private!”

“Publi¢Photo B” Private

“Phote A'is'private!”

- W finishes

R finishes =

11

[N]Jon-blocking Operations

Do not wait on external events
— Locks, timeouts, messages, etc.

* Lower latency
— Save the time spent blocking

[O]ne Response

* One round-trip

— No message redirection
* Centralized components: coordinator, etc.

— No retries
— Save the time for extra round-trips

* One value per response
— Less time for transmitting, marshaling, etc.

[W]rite Transactions That Conflict

 Compatible with write transactions
— Richer system model
— Easier to program

The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties

Why SNOW Is Impossible
- S S [Cw

Assume
SNOW

A = new

B := new
Violates
property S

24

W starts

W finishes

16

SNOW Is Tight

S >» S+N+O: COPS-DW

N S+N+W: Eiger

O S+0O+W: Spanner-RO
W N+O+W: Spanner-Snap

SNOW-optimal: have any 3 properties
Latency-optimal: have N and O

Study Existing Systems with SNOW
SNOW-optimal and latency-optimal

System S

Spanner-Snap
[OSDI '12]

Yesquel
[SOSP '15]

MySQL Cluster

R RN RN |2

NS X N Z
S X \N|IIO

18

Study Existing Systems with SNOW
SNOW:-optimal

System
Eiger soi 13
DrTM (sosp 15
RIFL (sosp 15

Sinfonia (sosp o071
Spanner-RO

[OSDI "12]

3
1
2
2

IV IV IV IA

N\ SN XN|»
N XX K K|[=2

Study Existing Systems with SNOW

Candidates for Improvement

System S N O w

COPS | % | v
Rococo v v

Many more

20

Improve Existing Systems
with the SNOW Theorem

« COPS [SOSP ’11]

— Geo-replicated
— Causally consistent

—Read-only txn: X N & W

* Rococo [OSDI '14]

— Supports general transactions
— Strictly serializable
—Read-onlytxn: S W & W

New Algorithm Designs

« COPS-SNOW
— Latency-optimal (N + O)

« Rococo-SNOW
— SNOW-optimal (S + O + W)

Rococo’s Read-Only Txn (S + W)

C S\ S [Cu

| R: 1st roundl —AW starts
= “new”
ﬁ {B := “neW”
Gather
EQUAL ? conflict info
= W commits
H B=“neW”
47
|R: 2nd roundl
.
. » .
|R: Nth roundlv - W finishes

23

Rococo-SNOW (S+0+W)
Cw

- W starts
A = “new”
B := “new”

Forward TS

Cn
R

i i
TS

s

~ Strictly
Serializabl

1A

A=old| | ===

B=old

= W commits

- W finishes

24

Evaluation of Rococo-SNOW

* To understand
— Latency of read-only transactions
— Throughput of other types of transactions

* Experiment configuration

— ldentical to Rococo’s
— TPC-C workloads

* $p’ https://github.com/USC-NSL/Rococo-SNOW

1200

1000

Latency (ms)

I
o
o

o0
o
o

o))
o
o

200

Significantly Lower Latency
for Read-Only Txn

i » OCC
Lock
- Wait y
_ Retries Always
Rococo
41 round 5
- AN :Ab 2PL
] A Rococo
! <-SNOW
0 20 40 60 80 100

Concurrent requests/server

26

Higher Throughput

under High Contention

< 6000 -

=

g 5000 - Rococo
= -

2 4000 - SNOW
0

£ 3000 -+

= ; —= Rococo
k= -14% throughput e :

% (Low Contention) . — qtentlon) 2PL

,-E . High Contentio — ocC

0 20 40 60 80 100
Concurrent requests/server

27

Conclusion

« The SNOW Theorem for read-only txns
— Impossible to have all of the SNOW properties
— The SNOW Theorem is tight
— Understands what is possible

« SNOW helps understand existing systems
— Many are not yet optimal

 Rococo-SNOW
— SNOW Theorem guided SNOW-optimal design

— Significantly higher throughput and lower latency
under high contention

29

