Our Final Consensus Protocol:
RAFT

f| vET [Nov [H
TES | TAM
fi| Ex [TV ()

COS 418: Distributed Systems
Lecture 11

Wyatt Lloyd

Slides adapted from Mike Freedman’s, which are partially adapted from Diego Ongaro and John Ousterhout’s

Goal: Replicated Log

CEEHEEEE

shl

a0 Logging S Logging
Module achine Module achine

Log Log
add| jmp| mov s add| jmp| mov s add| jmp| mov s

N U\ U\ J

Servers

* Replicated log => replicated state machine

* All servers execute same commands in same order
* Logging module ensures proper log replication

RAFT

» Consensus protocol designed specifically to be
understandable

* YoUu’ll implement it!

* (We’ll save it for the final exam.)

Raft Overview

1. Leader election

Normal operation (basic log replication)
Safety and consistency after leader changes
Neutralizing old leaders

. Client interactions

I B A

. Reconfiguration

Server States

* At any given time, each server is either:

handles all client interactions, log
replication

completely passive
used to elect a new leader

 Normal operation: 1 leader, N-1 followers

<Fo||ower) <Candidate> <Leader)

Liveness Validation

 Servers start as followers

» Leaders send (empty AppendEntries RPCs)
to maintain authority
o If elapses with no RPCs (100-500ms),

foIIov_ver assumes leader has crashed and starts new
election

_ timeout, _
timeout, new election receive votes from

start start election majority of servers

(Followerv <Candidate> <Leader)

“step
down”

discover server with

discover current leader higher term
or higher term 5

Terms (aka Epochs)

Term 1 Term2 Term 3 Term 4 Term 5

G W >

time

Elections Split Vote Normal Operation

* Time divided into terms
 Election (either failed or resulted in 1 leader)
 Normal operation under a single leader

« Each server maintains value

* Key role of terms: identify obsolete information

Elections

« Start election:
* Increment current term, change to candidate state, vote for self

« Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
. Become leader
. Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
. Return to follower state

3. No-one wins election (election timeout elapses):
. Increment term, start new election

Elections

: allow at most one winner per term

« Each server votes only once per term (persists on disk)
« Two different candidates can’t get majorities in same term

——————————————————————————

B can’t also '[] [][] [] Voted for
get majority | candidate A

Servers

: some candidate must eventually win
« Each choose election timeouts randomly in [T, 2T]

* One usually initiates and wins election before others start
 Works well if T >> network RTT

Log Structure

term
L

command I

1 2 3 4 5 6 7 8
1 1 1 E1 3 E E
add cmpfet ovjmp [div [shi ub
1 1 1 E1
add cmp et oV jmp
1 1 1 3
add cmpfet ovjmp [div [shi ub
1 1
add cmp
1 1 1 3
add cmp et ovjmp [div [shi

 Log entry = < index, term, command >
» Log stored on stable storage (disk); survives crashes

* Entry

log index

leader

>~ followers

if term is current and is stored on majority of servers
« Durable / stable, will eventually be executed by state machines

Normal operation

d Logging S Logging
Module achine Module achine

DD D
add 'mLogmov s#\ add 'mLogmov s*\

- AN J

» Client sends command to leader
« Leader appends command to its log
» Leader sends AppendEntries RPCs to followers

» Leader passes command to its state machine, sends result to client
» Leader piggybacks commitment to followers in later AppendEntries

* Followers pass committed commands to their state machines
11

Normal operation

N\

/Logging
Module

ay

S

achine

i

add

jmp

mov

4

/

Logging

Module
23
T

N\

DL

add

jmp

mov

A

/

 Crashed / slow followers?

« Leader retries RPCs until they succeed

* Performance is good in common case:
* One successful RPC to any majority of servers

12

Log Operation: Highly Coherent

1 2 3 4 5 6

1 1 1 3
serverl add cmp fet E'IOV mp div

1 1 1
server2 add cmp fet E’lovap I:ub

* If log entries on different server have same index
and term:

« Store the same command
* Logs are identical in all preceding entries

* If given entry is committed, all preceding also
committed

Log Operation: Consistency Check

matching entry

leader |44 cmp fret rhovlismp) AppendEntries succeeds:

1 1 1
follower |r2n ov

1 1 1
leader |2 I? : .
add cmpjret jmovjmp AppendEntries fails:
' "R T mismatch
follower add cmp fret Ilhl

« AppendEntries has <index,term> of entry preceding new ones
* Follower must contain matching entry; otherwise it rejects

* Implements an , ensures coherency

Leader Changes

 New leader’s log is truth, no special steps, start normal
operation

* Will eventually make follower’s logs identical to leader’s
« Old leader may have left entries partially replicated

* Multiple crashes can leave many extraneous log entries

logindex 1 2 3 4 5 6 7

e~ s T R
s, I BB JF [
s [BB
s, I B b
sl l PR B B B

Safety Requirement

Once log entry applied to a state machine, no other state
machine may apply a different value for that log entry

« Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

 Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed - Present in future leaders’ logs

Restrictions on J \» Restrictions on

commitment leader election

Picking the Best Leader

S

Can'’t tell
which entries s,
committed!

2 3 4 5
1 R R
1 P2
1 R

Committed?

Unavailable during
leader transition

* Elect candidate that contains all committed entries

* In RequestVote, candidates incl. index + term of last log entry

« Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

« Leader will have “most complete” log among electing majority

Committing Entry from Current Term

s, i R R R [— Leader for term 2

s, 1[I PR 2 <— AppendEntries just succeeded

Can’t be elected as
leader for term 3

« Case #1: Leader decides entry in current term is
committed

- Safe: leader for term 3 must contain entry 4

Committing Entry from Earlier Term

Leader for term 4

s; I | 2 AppendEntries just succeeded

ssI 0 B B B

Case #2: Leader trying to finish committing entry from
earlier

* Entry 3
* s can be elected as leader for term 5 (how?)
* If elected, it will overwrite entry 3 on s,, s,, and s;

New Commitment Rules

Leader for term 4

* For leader to decide entry is committed:
1. Entry stored on a majority
2. =21 new entry from leader’s term also on majority

« Example; Once e4 committed, s; cannot be elected leader
for term 5, and e3 and e4 both safe

Challenge: Log Inconsistencies

1

2 3 4 5 6 7 8 9 10 11 12

Leader for term 8 1 M

1

A

A

p

~

@ p q

1

4

A

Fp b P
P p b B

1

4

Possible

followers

O | [|

O | [|

O | [[O |

< [

=[O [O]

=[O]| [O]

~

Missing
Entries

Extraneous
Entries

Leader changes can result in log inconsistencies

Repairing Follower Log

S

nextindex

1 2 3 4 5 6 7 8 9 101 12

Leader for term 7 1 b n Bk |5 |5 |6 |6 |$
@p pp @
Followers <
b)p pp B R R B B B B B

« New leader must make follower logs consistent with its own

— Delete extraneous entries
— Fill in missing entries

« Leader keeps nextlndex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

- If AppendEntries consistency check fails, decrement nextindex,

try again

Repairing Follower Logs

Leader for term 7

(a)

Before repair (f)

After repair (f)

nextindex
1 2 3 4 § 6 7 8 9 10 11 12
11144|5|5|6|6|6§
+ h oh
1 h h kbbb BB BB B
1111 h

Neutralizing Old Leaders

Leader temporarily disconnected
- other servers elect new leader
- old leader reconnected
- old leader attempts to commit log entries

* Terms used to detect stale leaders (and
candidates)
« Every RPC contains term of sender

« Sender’s term < receiver:
» Receiver: Rejects RPC (via ACK which sender processes...)

* Receiver’s term < sender:
» Receiver reverts to follower, updates term, processes RPC

 Election updates terms of majority of servers
* Deposed server cannot commit new log entries

Client Protocol

« Send commands to leader

* If leader unknown, contact any server, which redirects client to
leader

» Leader only responds after command logged, committed,
and executed by leader

* If request times out (e.g., leader crashes):
» Client reissues command to new leader (after possible redirect)

* Ensure exactly-once semantics even with leader failures
* E.g., Leader can execute command then crash before responding
* Client embeds unique ID in each command
* This client ID included in log entry
« Before accepting request, leader checks log for entry with same id

Configuration Changes

* View configuration: {leader, { members }, settings }

« Consensus must support changes to configuration
* Replace failed machine
« Change degree of replication

« Cannot switch directly from one config to another:

could arise
CoId o ’/ Cnew \
Server 1
Server 2 — Majority of C_,4
Server 3 i
Server 4 Majority of C,,,

server = 1
time \\

2-Phase Approach via Joint Consensus

In intermediate phase: need
majority of both old and new configurations for
elections, commitment

« Configuration change just a log entry; applied
immediately on receipt (committed or not)

* Once joint consensus is committed, begin
replicating log entry for final configuration

C,q can make C, v can make
unilateral decisions . unilateral decisions
o
|
Cnew ooooooo -
Co|d+new.......s_.......§
Coid :
: : —>
Cold+new entry Cnew entry tlme

committed committed

2-Phase Approach via Joint Consensus

* Any server from either configuration can serve as
leader

* If leader not in C__,, must step down once C,_,,
committed

C,q can make C, v can make

unilateral decisions . unilateral decisions
o
]

C e © 0 ¢ ¢ ¢ ¢ G
new .

Cold+new....". : """é leader not in Cnew
Cog steps down here
: : . >
CoId+new entry Cnew entry time

committed committed

Raft vs. Viewstamped Replication

* Log entries flow only from leader to other servers

* Select leader from limited set so doesn’t need to
“catch up”

« Randomized timers to initiate elections

* New joint consensus approach with overlapping
majorities

 Cluster can operate normally during configuration
changes

Raft Summary

* Designed for

* At most one leader per term
» Leader election randomized to avoid FLP scenarios
 Elect leader with most up-to-date log

* Logs operations use an inductive consistency
check, only accept an operation when previous
log entry term/index

* New leader repairs follower logs to match its
own and then can commit new commands

» Uses joint consensus for reconfiguration

